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So, we have been studying quotient spaces, you may say suddenly  why this Group Action? 

Group actions give you a big supply of quotient spaces. That is the motivation of introducing 

group action at this level. It will be used in many other ways, later on. Group actions occur in 

a natural way in all branches of mathematics, it is an essential part of modern geometry. It may 

be used as a technical tool in the study of certain symmetries of mathematical objects.  

The symmetry of  a certain structure is defined by its group actions. So, we cannot expose, go 

on exposing that aspect of it. But let us start with what is the definition, what are the basic 

concepts of the group actions. Some of it you might have seen while studying groups 

themselves.  
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Start with a set X and a group G. By a left action of G on X, we mean some kind of a binary 

operation but not exactly. G × X to X, take , a function,  𝜇 ( g ,x) we shall write shortly as 

gx, as if it is the multiplication in G. This notation follows the  special case when X is also G 

and 𝜇  is the multiplication in G, G × G to G. So, we are using the same notation here, but if 

you have different actions,  may be,  then you will have to  use  different notations.  That is 

what you have to do.  

So, this is the simplified notation, if there are more than one action, you cannot simplify all of 

them to the same thing,  that is one thing you have to remember. So, this 𝜇 has two important 

properties: One is associativity, g on x  followed by action of h is equal to the action of (hg) on 

x. So, bracket hg ( x) is (h g) bracket x. Secondly, the identity hypothesis namely, if e is the 

identity element of G, then the action of e on any x namely, ex, which is simply 𝜇 ( e, x) , that 

must be always x itself.   

Once a map like this satisfies these two conditions,  you will call it an  action. Because we are 

writing it on the left side,  this composition etc is taken from left side, we use the term left 

action. Exactly same way, you could define a right action also. I will not bother to define that 

here, it is very straightforward.   
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Now, there are a few inbuilt structures here. Take x belong to X. We denote Gx, Gx denotes  all 

elements of the group G which keep the point x fixed-- g (x) is x. See you think of the action 

of g on  X as a motion, it is moving the particles of X, elements of X are moving. That motion 

is given by g. That is the dynamic way of thinking about a group action.  

Similarly, Gx is set of all gx, where g varies over G. So, this is called the orbit, Gx  is called 

isotropy subgroup of G at x. Gx depends upon the x, if you take a different  x, it will be different. 

Of course,  isotropy is a subgroup of  G which also depends on x.    We introduce an equivalence 

relation in X as follows:  x and x′ are equivalent, if there is a g which will bring x to x′, gx 

equals x′. 

Obviously, g-1 will bring x′ to x. And identity takes x to x. And if g takes x to x′ and h takes x′ 

to say x″, then  hg would have taken x  to x″. So, this is a equivalence relation. So, just like we 

had three different ways of looking at the quotient map that is precisely what is happening here. 

So, all orbits are obviously disjoint and for each x there is an orbit, therefore X is the union of 

all these orbits under the G action.  

When you have this equivalence relation that just means that two 

elements are in the same class, same orbit. If you look at all the 

orbits as a set Y, then you have a surjective mapping from X to Y. 

Here I am writing Y as X slash G on the left, because it is a left 

action, if it is a write action then I would write  x slash G on the 

other side. So, this map is nothing butx going to it is orbit, it’s 
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equivalence class. So, all the three pictures are here of a quotient 

map. So, you have already got a quotient set here X to . 
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One can  define, I told you, a right action also. In fact, every left action can be converted into 

right action by defining  xg as g-1(x). ( If xg is equal to gx will not work, the law of associativity 

will  give  trouble.) So, g-1(x) then it is easily checked that this becomes right action. And if 

you have a right action by the same formula , you can make it left action. Therefore, roughly 

speaking there is no need to study right actions, once you have studied left actions or vice versa.  

So, depending upon whether  you are lefty or a righty,  you can choose which ever you like. 

Sometimes there are both actions, one action on left and the  other on the right.  That is why 

we need both these concepts.   
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Here is another remark. For each g in G, the assignment x to gx is a bijection. because G is a 

group you see, so, every element in it is invertible.  Therefore inverse image of  x is  g-1( x). 

Let us write this left action by Lg.  Now, Lg is a map from X to X and I can say that  it is a 

permutation of X, because it is  a bijection. So, what you get is: for each g, the assignment g 

going to Lg defines a map from G into the permutation group of the set X.  

This itself is a group homomorphism, because of the associativity. Lg composite Lh is L of gh 

that is what associativity says. ... So, given an action, I have a group homomorphism from G 

into the group of all permutations of X. Conversely suppose you have such a group 

homomorphism, you may call it  capital L. Then you can define  i.e.,  little gx, equal to 

Lg operating on x. Then 𝜇 will  become a left action  on X and if you do again Lg of this action 

will give you back the same  L. So, there is a one-one correspondence between actions and 

group homomorphisms from G into permutation group of X.   
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Here are few more terminology.  We say an action is transitive if for each pair x, y  belonging 

to X, there exists a g in G such that g of x is y. So, any two elements are related by an action 

of G. The element g may depended upon the elements x and y....  It is the same thing as saying  

that there is  one single orbit, the entire X will be one orbit. Start with any point you can go to 

any other point by an action of g, so,  there will be just one orbit which is same thing as saying 

that the action is transitive.  

Now, the action is called effective, respectively, faithful,  first let us look at the definition of 

effective:  gx is x, for every x implies x must be identity. what is the meaning this? what is the 

meaning of this? --- that every non-trivial element defines a non-trivial permutation. So,  some 

people call it faithful also. This just means that the corresponding homomorphism from G to 

 is an injection, is a monomorphism. So, faithful is same as saying the corresponding 

homomorphism is injective.  

 

You say the action is fixed-point free, (sometimes merely `free action’) whenever gx is x for 

some x implies g is identity. So, this is very, very strong in the sense that if we have a non-

trivial element, then it will not fix any element, all the members are moved. gx is x for some x 

even if it  fixes one x, then it must be the identity. Identity, of course, fixes everything. So, such 

an action is called a free action. Some people call it  fixed-point  free action also. Free does not 

mean that  it does not cost you anything, it costs very high actually.   

195



(Refer Slide Time: 13:14) 

 

There are a few other concepts like this, which I will use much-much later, but right now I just 

introduced them. Take a group G which is acting on a set X.  Suppose you have  a 

homomorphism 𝜌  from another group H to G. Then through this homomorphism we can make 

H act on X by the formula h of x is :  𝜌 (h) that is an element of G, take that action of 𝜌 (h) 

on x.  A generic name for this  is  restricted action of G to  H via  . (This is a typo here.)  

This name is borrowed from the special case when 𝜌is the inclusion homomorphism of a 

subgroup H.  Suppose H is subgroup and 𝜌 is the inclusion. Then there is  this name restricted 

action’;--- makes sense. The same thing has been generalised to any group homomorphism, 

whether 𝜌 is injective or not.  
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On the other end, you can have a different point of view. Suppose, you have a homomorphism 

 from G to another group K. Then you want to have what is called an extension here. For that, 

you have to  enlarge the  space X as follows: This  , X together with 𝛼 is  𝛼, this is a 

set on which  K will act. But how this  𝛼 is defined? For that you have to wait here, let us 

look at this, how this is done.  

Look at K × X as a set and on this set  take the action of G, via the first slot K. See there is a 

homomorphism from G to K. So, these are group homomorphisms. You can think of G acting 

on K by the formula namely g k equal to... wait,   I want to take some action on the right side, 

namely, gx equal to  k times 𝛼g-1, see 𝛼g  is an element of K. So, I am multiplying them inside 

K, k into 𝛼g-1. On the other slot,  take just the action of G on X.  

Essentially, if you do not write this  at all, suppose it is inclusion map, it is k into g-1, gx like 

g and g-1 are cancelling out each other. We are introducing that g, g-1, if you combine them it 

will be as if no action at all that is the kind of thing that we are thinking about. So, let X 𝛼 

denote orbit space of K × X under this action. So, this is going to be a quotient space of  K× X 

under this action and let bracket [k, x] denote the orbit of the point (k, x).  

So, these are the equivalence classes here for example, if I write 𝛼g-1 on this side and G on this 

side, it will represent the same element. So,  that is my ; this will already indicate what is 

K, because   is a homomorphism  G to K.  
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Now, you can define the action of K on X 𝛼from the left slot.  In every equivalence class, the 

first slot is from from K -- ( k′,x). So,  k times that can be taken to be bracket  [kk′,x]. -- the 

class of that.   

So, we first created room by enlarging  X created some room for K to act, by just taking K× X, 

then you can take a left action, but we do not want the whole of K × X, we have to take the 

quotient of that. 

So, it is a matter of verification to see that this indeed defines an action. It is all straightforward 

there is nothing to be verified here. We refer to this action as the extension of G action to an 

action of K. Note that the set on which K acts is not the same as the  set on which G acts-- we 

have extended X. So, this is somewhat larger set and larger action.  
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Let us take some examples now. The simplest example of a group action is the natural action 

of G on itself, G acting on G, where G is a group.  The orbit space will then consist of just one 

single element because the action of G on G itself is transitive--- if we have g and h, which 

element will bring g to h?  Namely,  hg-1 operating upon g will be h. That is all.  
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If H is subgroup then we can take the so called restricted action of H. So, h will act on the entire 

G, say on the left or on the right whichever way you want, it is called restricted action through 

the homomorphism 𝜌 from H to G of the action number 1, the example 1. The orbits here are 

nothing but the left cosets or the right cosets according to which action you have taken. So, this 

is what you study in group theory right in the beginning. Under the inclusion of homomorphism 

𝜌 from H to G. 

Now, if we extend, see first we had G × G, G acting on G itself, G × G to G you restrict it to 

an action of H because H is a subgroup  via, some monomorphism, you will not get back  G,-- 

have to be careful, you will get something different.  So, it is interesting to check what you get.   
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Now that is all about general group action on a set. Now in group theory you study this one 

very deep, all the way going to Silow’s  theorems and so on. So many interesting results can 

be obtained by just studying this one. But now we want to go the topology.  

 

Suppose now, X is a topological space, then we are not satisfied by just permutations as actions. 

But the homomorphism must be into the homeomorphism group, not permutation group, the 

set of homeomorphism is a subgroup of the group of all permutations.  

So, that is the extra condition that we need when X is a topological space, which is the same 

thing as saying that the action from G × X to X is now continuous. In what way ? We could 

take G with the discrete topology. X has its own topology.  Under that 𝜇 must be a continuous 

map  G × X to X, along with the two hypotheses of associativity and identity that we have seen. 

That is called a topological group action.   
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In other words as I told you already, the homomorphism on G takes values inside the 

homeomorphisms of X. This is a subgroup of all permutations, --self-homeomorphism of X. 

Again, we have the same quotient set now, you give quotient of topology to this, this becomes 

an orbit space not just orbit set. What is the topology? Remember, a  subset U of   is open 

if and only if q-1( U ) is open in X. The set of orbits becomes a topological space  called orbit 

space.  
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In group theory, group actions are most useful to study properties of groups themselves. Here 

we shall use them to study properties of the quotient spaces.  Pretending as if we know 
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everything about X, what can you say about ?  That will depend upon the kind of action 

that we have.  
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So, accordingly you introduce a few more concepts here—more  

definitions. An action is called even if for every point in X, you have 

a neighbourhood U of x in X, such that if you translate U by g, i.e., g 

U, it will never intersect U,  g U ∩ U is empty for all g ≠ e. So, this 

is much stronger than the fixed-point free action. This cannot  be 

defined for arbitrary sets because there is no neighbourhoods or no 

topology there and so on.  

So, now, we have stronger notion of fixed point free action.  gU ∩  U 

is empty all g ≠e, where here gU denote the set of all elements which 

look like gx where X runs over U, g is fixed, we shall call such a 

neighbour of U(x) and even neighbourhood. It is easy to see that an 

even action is fixed point free. That is what I told you. Converse is 

not true in general. But of course if we assume G is finite and X is 

Hausdorff,  now you start doing topology see?  So, this is an easy 

exercise, I have left it as an exercise.   
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It is easily checked that restriction and extension of an even action are even. Given a topological 

space, clearlythe  entire group of homeomorphisms acts on that space.  We get more interesting 

actions by taking subgroups. What kind of subgroups you take?  That is all.  Once you know 

the action of all homeomorphisms on a topological space  you do not have to define it for 

subgroups separately. Which subgroup you take  will define the symmetry of X. So, let us stop 

here and next time we will see examples. 
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