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Welcome to all of you. So in module 10 as promised earlier, we will do what is called  Seifert-van 

Kampen theorem. The simplest form will be taken today. Later on, we will see  more advanced 

versions of this one. Seifert was a German mathematician. Van Kampen was Dutch who worked 

in America. (Most of the time in America this result  is just called Van Kampen's theorem. They 

do not take the name of Seifert.) But to be precise they did it independently, ---not as a joint work. 

And they did it with different assumptions, in different contexts. So today, we will try to cover up 

simpler versions but which applies (1:22) to both the contexts. That is the whole idea.   
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So this is the statement. Let X be written as the union of two open sets U and V. Both U and V are 

open and the intersection is path connected. Once you say path connected you pick up a point in 

the intersection, say x naught. And let us assume that the inclusion maps of U in X and V in X,  

and ,  let us call them,  they induce homomorphisms   and   on  . 

They induce homomorphism    and   which are trivial homomorphisms; everything goes to 

the identity element of   of X, x naught-- the trivial homomorphisms. They are not inclusion 

maps on fundamental groups level, they are trivial homomorphisms,   and  .    and    

themselves are just inclusion maps. So this is the assumption ---   and  are trivial 

homomorphisms. 

X is covered by these two open sets. Intersection is path connected. Under this, we can conclude 

that the fundamental group of X at x naught itself is trivial. You understand that the whole thing. 

For example, suppose   of U x naught itself is trivial, then the homomorphism will be trivial. 

Similarly,  of V x naught itself is trivial. Then again the inclusion induced map will be trivial. 

Inclusion induced map will be trivial when you pass to the fundamental group.  

So if U and V are simply connected then union is simply connected, provided the intersection is 

path connected. So this is one way of remembering it. The theorem is slightly a generalization. U 

and V themselves may not be simply connected but all those loops inside U as well as inside V 

separately thought of as loops inside X, they are null-homotopic. So these two are different 
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statements. U itself is simply connected then they will be null-homotopic inside U. So that is a 

stronger hypothesis.  

So under weaker hypothesis, namely, inclusion induced maps are trivial we will get that the 

fundamental group of X itself is trivial. In other words, if fundamental group of X was not trivial, 

some element of  of  U, some  loop in U or something in V must have been non-trivially mapped 

into  of X. This is the meaning of all this. So let us prove it now by  totally elementary methods-

--totally elementary methods; no covering spaces, nothing of that kind.  
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Here is the picture of what is happening. So U and V are open subsets like this. Their intersection, 

I am assuming, is path connected. The entire space is your X. Now I have chosen, in the 

intersection, I have chosen a point x naught. So the idea is if I take any loop inside V like this, 

when you use the entire space it is null-homotopic. Similarly,  any loop which completely lies 

inside U, the inclusion map will take it to X. There, it is null-homotopic. That is the assumption.  

So suppose I start with a loop which is ,  like this and I have divided, this whole thing is ; dot, 

dot, dot; dot, dot, dot, and coming here and then coming back here. Only the last two portions I 

have drawn with thick arrows, thick lines. So this is my gamma naught, this is my  . So what I 

have done is I start tracing gamma naught, this part of gamma. Now I see that it is going through, 

it is going into V part from U part. So here I stop and cut it, I mean, I am making  a subdivision. 

Remember we can make subdivisions.  
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Now from this point onwards, I am inside U, so somewhere here, I have to stop because now I will 

be going inside V. So you can call this   1. Now I go here and call this part  2. Again I am 

entering into V so I say 3, 4, blah, blah, blah, finally n coming back. What I have done? I have 

cut down the path, the loop, into subdivisions such that each path is either inside U or inside V. 

Once I have that, I use the path connectivity of U intersection V. Look at this.  After going here I 

have stopped  somewhere here.  Where did I  stop? I have stopped inside U seeing that I am now 

going inside V. So this point is already in U intersection V. The first point on the path, I mean 

zeroth point is this one, the first; a1  is already inside U intersection V. So this 0 is only a path. 

Now I complete it to a loop by joining a1 to x naught. This entire path 0 composite  1 is a loop 

inside V situated at x naught.  

Therefore, by my hypothesis if you think this as a loop inside X then this is null-homotopic. 

Because this part is null-homotopic I can just ignore all this part and just go directly from here to 

here and look at the rest of them. Because this part is null-homotopic. You can add or subtract, add 

or delete this part. There is no problem. So delete it. What has happened? The number of divisions 

in   has reduced. So by induction the whole thing is  null-homotopic.  

What is the induction-starting point? That there is no division. That means the entire thing is inside 

U or inside V. Then it is null-homotopic by the hypothesis. So that is the starting point of the 

induction. So if I cut down this one, then I have only from here to here directly--you know this 0 

is not there. First thing is this whole thing is  1. This entire thing is inside U now. Then the 2, 

3, 4, 5, 1 up to n instead of 0 to n. So that is only n - 1 parts. Therefore, by induction, the proof 

is over.   
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Now let me just go back here and see what details I have written, how to write  down this.  Start 

with a loop  in X at the point x naught. U and V cover X, therefore  inverse of U and  inverse 

of V will cover the interval [0,1].  Just like we did last time, we can choose,  you know, a Lebesgue 

number >0  and  a number which is slightly smaller than Lebesgue number for this covering. Then  

I choose the length of these intervals small enough,  I am cutting it into n parts, where  , 

then what happens is, the respective sub intervals , they will be all of length less than .   
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That would mean that each closed interval is either inside   inverse of U or  inverse of V. This 

is same thing as saying that  restricted to each of  these intervals is either inside U or inside V. 

The point, starting point x naught is in both of them. It is in the intersection. So the first part namely 

t0 to t1, this part is in one of them. Which one? Just for definiteness, I have written as gamma 

inverse of V on the right side, by dropping some of the points, please remember that  you might 

have cut it too small. So t1 to t2 maybe also inside V.  

Then you better take both of them  together 0 to t2 all of it inside V. So like this you can combine 

all the consecutive divisions which are inside V till you come to a point from which the next arc 

is going to be inside U. You can rename t1, t2, … tn in such a way that 0 to t1 is inside V, t1 to t2, 

(I mean the part of the curve not the interval), t1 to t2 inside next one U and alternatively, U, V; 

U, V and so on. So that is just for saving some argument. So ti to ti plus 1 is inside V for all even 

numbers and for all odd, it is inside U, because I start with 0 to t1 inside V. The next one will be 

odd so it will be inside U. And so on. So, that is the picture here.  
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Next step is to show that  is homotopic to a constant loop, the constant path being c at x naught. 

We induct on the numbers of the division required to express  in the above form. If n is 1 this 

already implies that  itself is contained inside U or V. Therefore, by hypothesis that  is a  trivial 

homomorphism,  we are done. Maybe I should write this here V, so this should be V.   check is 

from  of V to this one. This must be V, this is the conclusion.  
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Assume now n is greater than or equal to 2,  and that the claim holds whenever we can express a 

path in the above form with fewer than n divisions. So it is an induction hypothesis. Now put   i 

equal to  restricted to .  How does   look like? It looks like 0 star 1 star dotdotdot  n. 

Looks like means what? These two are not the same paths. They are path homotopic.  

You remember that. If you subdivide then each of them (you have to express all of them) in terms 

of paths, -paths  have to be all the time parameterized on the interval [0,1]. So you have to take 

composite of this. Then this is path homotopic. This is what we have seen. And i  are alternatively 

inside V and U, V, U; V, U and so on, that is the picture that we are seeing. 
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Now look at ai which is equal to .  ai is in the intersection of U and V. Choose a path   from 

ai to x naught.  Then what happens is: the loop  based at x naught is completely contained 

inside U or V.  Earlier,  I chucked out  gamma 1 but you can chuck out the last one,--- n here.  

Deliberately I have done this one in two different ways.  

So here also in the picture, see  goes like this, come back via n that is null-homotopic. 

Therefore,  by induction hypothesis, this path all the way going up blah, blah, blah uptil here, 

coming back, that will have only one less number of divisions. So this will be also null-homotopic. 

So composite of two null-homotopic things is null-homotopic. So you will get  gamma itself  null-

homotopic. So, this is the way to write down the proof, That is all. Any questions?  

Student: No   
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Professor: Here I have written down full detail again. Start with gamma which is divided into n 

parts. These paths are not necessarily loops. Their endpoints could be different. 0  starts at x 

naught, ends up somewhere in a1. You have to convert them into loops. So first do not worry about 

this part. Take the last part, join it with lambda n minus 1. Insert lambda n minus 1  and lambda n 

minus 1 inverse between  and  n.  This is the inverse of this. So I can insert it because this 

itself is null-homotopic.  

Then you use associativity and put these two things in a bracket. This becomes a loop in either U 

or V. So you can ignore this one. This is constant, I mean homotopic to a constant. This part 

together, this whole thing will be inside  U or V. So the rest of them together have  one less division.  

So the thing is now in n minus 1.  Therefore, by induction hypothesis, this part, viz.,   

 is also null-homotopic.  

So together  the whole thing is null-homotopic. This is the way to write down, so proof is over. 

 

 If two open sets are such that they are simply connected and  they intersect in a path connected 

subspace, then the union is simply connected. This is a corollary to this one, as I have indicated. 

Any questions?  
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Let us now prove a very interesting result. We have computed  of , now we are computing for 

all the spheres,  of  for all n greater than 1. --- I am going to compute them in one go. What is 

it? All of them are simply connected. The fundamental group is trivial. Strictly speaking you 

should remember that I should pick up  a base point here. If I am claiming that this is trivial for 

one base point it will be trivial for all base points. We have seen that.  

Because if you  change of base points, the two groups are isomorphic. That is what we have seen. 

So, I have not written down what  the base point. That is all. It is not a mistake. This is deliberate-

-- just to cut down the notation, that is all. But in my mind it is there, the base point. Whatever 

base point you take; it is the same.  That is why I have not mentioned the base point.   is 

trivial, i.e.,   is simply connected for n greater than or equal to 2.  

For n equal to 1 it is infinite cyclic. For n equal to 0 what is it? For n equal to 0, S naught is not 

even connected.  You take any connected component; again the fundamental group is trivial, so in 

that sense only n equal to 1 is is  a distinct case.  In this sense,  all other spheres are  `simply 

connected’.  However, a space which is not path connected is never referred to as simply 

connected. In the definition of simply connectivity you first assume that  it is path connected. And 

then put the condition that fundamental group is trivial.  

Therefore, you cannot call S naught as simply connected. But fundamental group of S naught 

taking any point as base point is trivial. That is true. Yeah.  

153



So what is the proof? Proof is very easy. All that you have to do is write the sphere as union of 

two open sets in a nice way. What do I do? I select the north pole  0 dot dot 0 1. Subtract it. Throw 

it away. Similarly, take the South pole 0 dot dot 0 minus 1. Throw it away. U and V are open 

subsets because each of them is  minus  a single point. Single points in  are closed.  So the 

complements are open. So, once these things are open the union, you have to check is whole space. 

U misses one point, that point is already inside V. So U union V is the whole of . That is fine. 

Now comes the point how does  minus  a point  look like? So this is where you have to know 

elementary topology namely,  if you remove any one from a sphere, the space you get is 

homeomorphic to  via stereographic projection.  

I hope you know these things. If some of you do not know you can ask your tutors and you must 

know this before the end of this course, if you have not learnt it in the beginning of the course. If 

you remove one point from  what space you get is  is homeomorphic to . Same thing happens 

for all n.  You remove one point from ; you get a space homeomorphic to . And so on.  

In particular U and V are simply connected because they are homomorphic to contractible spaces. 

So they are themselves contractible. So they are simply connected. Finally, you have to look at 

what?  How does U intersection V looks like? U intersection V is sphere minus two points. Here 

you have to use the fact  n is greater than or equal to 2, not in equal to 1. If n equal to 1 and remove 

north pole and south pole, what you get is  two copies of , disjoint.  

That will not be connected, If you remove one point from the sphere, you get a  n. If you 

remove one more point it is still connected. Therefore, the intersection of U and V is connected, 

actually path connected. So all the hypothesis of the above theorem are satisfied, actually stronger 

hypothesis namely  of U and  of V are themselves trivial. So what is the conclusion?  of 

 is trivial. Is it okay?  

Student: Yes   
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Professor: Now here are a number of exercises. Each of you should try to solve them by yourself. 

Then only you will know that whether you are understanding this course or not. So you have to 

rely more on your self-assessments here, whether you take any exam or not, so the tutors will help 

you in understanding things, if at all you communicate with them, by telling whether your answers 

are correct or not.  

So let me just go through these exercises. These exercises will be separately sent to you in PDF 

format. Right now you do not have to write down these things. So, the first one is: suppose X is 

path connected and pi 1 of X, a, is abelian-- commutative group, for some a inside X, a is a some 

point in X. Then for any b inside X, any two paths,    and  joining a to b, your  and , these 

two homomorphisms are the same. This is what you have to prove,  of some  is equal  of 

some , where  is an element of    
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Second exercise is, take any homomorphism from  to , integers to integers, group 

homomorphism, you can think of this as induced by a map from  to , given a continuous 

function from  to . you can fix up some point say, 1, you can also assume 1 goes to 1. Then 

pass to the fundamental group level, . But they are infinite cyclic groups,   to . 

That homomorphism will be . Every homomorphism is given by some map. This is what you 

have to show. 

Moreover, up to homotopy, this a map is unique. Suppose you choose two such maps, f and g such 

that f check and g check are the same on the fundamental group. Then I want to show, I want to 

claim that the maps themselves, f and g are homotopic. Then there is a remark that this result is 

true for all spheres, but not for arbitrary spaces. For spheres, this goes under the name  `Hopf 

degree theorem’ which we shall not be able to do in this course.  
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Take a subspace A contained inside X and a point a inside A. Inclusion induced homomorphism 

A to X is surjective if and only if every loop in X based at a can be homotoped to a loop in A. 

Suppose omega is a loop in X,  based at a. Then there will be a loop, say tau inside A and these 

two will be homotopic. That is the meaning of this one. Further if  A is path connected, then show 

that the statement that pi 1 is surjective is equivalent to saying that every path in X with endpoints 

in A can be homotoped to a path inside A. So,  these are straight forward exercises you have to 

work out.  
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The next exercise is about the product. The product of two spaces  of X cross Y comma x naught 

comma  y naught is  of X comma  x naught cross pi 1 of Y comma y naught. Product of two 

spaces, the fundamental group is also a product of the corresponding spaces, product of the 

fundamental group of the corresponding spaces. In particular, you have to write down what is pi 1 

of  . That is very obvious once you know the new step. This notation indicates an 

isomorphism of groups here.  

Next, once you have computed this, the next exercise depends  --- that is why they are bunched 

together here, depends upon this exercise. Look at a map   given by z1 

comma z2, (these are unit complex numbers, so you can multiply them,) going to  z1 z2 comma 

Z2.  (z2 the second coordinate remains as it is and  z1 gets multiplied by z2.) Look at this function. 

What happens to this function when you pass to the fundamental group level? What is f check? 

You have to compute. This you can do once you have done the previous   one correctly.  
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This exercise you do not have to worry about right now. Only after several, some more lectures 

have been done, namely after you have, you have done a live session, we can discuss the Mobius 

band.   
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So I have told you some about of the exercises.  But you can take try them all.  
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So for example this one says take two functions from X to any sphere, the  sphere could be  

 whatever.  These two are maps are such that  f of x will never be the negative of g of x. 

That is for no point x in X,  f x and g x are  antipodal. Then f is homotopic to g.   
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So there are enough exercises here for you to work out.  
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Next module will be some Set Theory, sorry Set Topology, Point Set Topology. These point set 

topology result, in an elementary course in point set topology,  might not have been covered. 

Because they are somewhat advanced topics. So I will cover them to the extent we will need it in 

this course. Though the title of this topic is  Function Space and so on, we are not going to do the 

entire function space theory as done in a point set topology course.  That will divert the course. 

We will do only things which we need, rest of them, if you want more, you will have to pick it up 

from some Point Set Topology book. That is for the next module. Thank you. 

160


