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Brahmagupta-Pell Equations 

Welcome to the penultimate lecture of our course, we have been discussing units in quadratic 

extensions of rational numbers. We saw the proof essentially of Dirichlet theorem in the case 

of the quadratic extensions in our last lecture, where we proved that the failed Q root d where 

d is positive will have infinitely many units, we are yet to ofcourse, prove the explicit 

structure of the group of units which is what we intend to do today.  

And we also want to describe all these units using continued fractions for root d basically, we 

are going to look at convergents of root d and these convergents will give us the solutions to 

the famous Brahmagupta equation. And before going to the Brahmagupta equation, we want 

to go to what is known as the fundamental unit.  
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So, we observe that units in Q root d is an infinite set, this is something we have observed in 

our last lecture, let A be the set of units, we consider those units which are bigger than 1. So 

this is a set of units is it an empty set or is it a non-empty set. So, we observe that if you have 

units, the units will be either positive or negative. Since you have that 1 and minus 1 are 

always units, we call them the trivial units in Q root d.  

So, whenever you start with any non-trivial unit, if that non-trivial unit is negative, you can 

multiply it by minus 1 and then you get a non-trivial unit which is positive. So, we have now 



a non-trivial positive unit, the only trivial positive unit is 1. Since our unit eta which is now a 

positive unit is non-trivial, eta cannot be 1. 

So, the possibilities are that eta less than 1 or eta is bigger than 1. If eta is bigger than 1, then 

it is in the set A, so A is non-empty. If eta is less than 1, we will take 1 upon eta, 1 upon eta 

has to be bigger than 1 eta is positive. So, its multiplicative inverse is also a positive. 

Remember from the times of Brahmagupta we know that if you have a negative number and 

you multiply by that to a positive number you will get a negative number.  

So, your eta if that is positive, its inverse should also be positive. And therefore, whenever eta 

is less than 1 the inverse is bigger than 1. So, in any case, we have that A is a non-empty 

subset. In fact, the whole set of units is expressed by elements in A by taking the plus or 

minus 1 power of elements in A and putting a plus minus sign outside.  

So, then A is non-empty. And in fact, the units is equal to plus minus A to the power plus 

minus 1 this is a way to denote that any unit has to be plus or minus eta or eta inverse where 

eta is in A this is what we mean. So, in some sense, A contains about one fourth of the units. 

Whenever you have any unit in A, you get three more units you will get. So, if you start with 

eta an element in A then you will have 1 upon eta, you will have negative eta and negative 1 

upon eta.  

So, you get four different units starting with 1 unit in A and then you have the two trivial 

units plus minus 1 which will give you the whole set of units in Q root d. We also noticed 

that the units are of the form u plus v root d where u and v can be integers or half the integers. 

So, let us see what are the conditions on u and v. 

If this is of the form eta equal to u plus v root d then eta inverse is eta conjugate because 

norm of a unit is 1, and the conjugate is u minus v root d. Now, eta is bigger than 1, so its 

inverse is less than 1. So, this u prime is less than 1, this implies then v has to be a positive 

number, v cannot be 0 because if v 0 the only interior unit is going to be plus minus 1. But we 

have something which is bigger than 1. So, v is non-zero, we could be either positive or 

negative.  

But here we have that u minus v root d is less than u plus v root d. So, cancelling u, we get 

that minus v root d is less than we would be, so v has to be positive. Now, v is positive, what 

about u? Is u positive or is u negative? If u is negative, then eta prime will be a negative 

number because now our v is positive, so negative v is a negative number. And if your u is 



also negative, then it tells you that you have eta prime to be a negative number, which is also 

not possible, because if you have something bigger than 1, it is a positive number, its inverse 

should also be positive.  

So, also, u is bigger than 0, can you have u equal to 0, what we could have here is that u is 

bigger than or equal to 0, if you have u equal to 0, your unit looks like v into root d and to 

have v into root d multiplied by some element again into the algebraic integers or you would 

have that the norm is equal to plus minus 1 that tells you that minus d v square is plus minus 

1 and these can happen if your d is positive, then minus d v square can be negative.  

And so, only for d equal to 1, you have a possibility of having the solution, but 1 is not 

considered a square for interior, we are not considering d equal to 1. So, therefore, u equal to 

0 is not a possibility. So, what we have obtained is that if you take a unit eta in A, then its 

integral part, so, if you write it as u plus v root d, then u is positive and v is also positive.  

Moreover, we know that these u and v are integers or half the integers. So, once you start 

from 1 and u and v are both positive integers or half integers, you will start from 1 by 2 plus 1 

by 2 root d, 1 by 2 plus 1 root d, 1 plus 1 by 2 root d, 1 plus root d. And then you will 

increase but you have these finitely many possibilities for the smallest possible possibilities 

for u and v.  

Therefore, you have, therefore we can find the smallest element in capital A, it is important to 

note that just because you have a set of elements of the form u plus v rood d where u and v 

are integers does not mean that you will always find the smallest set of smallest element in 

such a set.  What we have is that the u and v are not just integers, not just half the integers, 

but they are both positive. So, since you have both of them positive, there is a smallest 

possible such unit call that eta naught call the smallest element of A by eta naught.  
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Now, eta naught eat as a unit. So, all positive powers of eta naught are units and these powers 

will certainly go to infinity because eta naught is bigger than 1. So, the powers will go to 

infinity if eta 1 is any unit in A then there is a natural number small n such that eta naught 

power n is less than or equal to our eta 1 less than or equal to eta naught power n plus 1 eat 

naught powers are going to infinity and eta naught was the smallest element in capital A.  

So, there will be an n such that the powers of a eta naught up to that end are less than or equal 

to the eta 1 that you have fixed but the n plus 1 power and also the n plus 2 and so on will go 

beyond eta 1. So, we take that largest such integer so that we call that integer is called n, 

okay. Now, here eta 1 is a unit eta naught power n is a unit, we can divide throughout by the 

eta naught power n.  

So, here we get 1 less than or equal to eta 1 upon eta naught power n less than eta naught, so 

our eta 1 upon eta naught power n, remember, eta 1 is a unit eta naught is a unit so all powers 

of eta naught are units, then this is definitely a unit. And this unit is now sandwiched between 

the number 1 and eta naught, if this number was not equal to 1, it would give you an element 

in a, because A is the set of all units bigger than 1.  

So, if this number was not equal to 1, we would get that this would then be in A, but it then 

cannot be less than eta naught eta naught was chosen to be the smallest element in A. So, this 

contradiction says that whatever we have assumed here that it is not equal to 1 that cannot be 

true. So, therefore, we get that eta 1 is eta nought power n therefore, every element in capital 

A is a power of eta naught.  



And then we can write down all units in A, all units in Q root d are plus minus eta naught 

power plus minus n or you may just have it to be n where you let n vary over integers. This 

very special element is called the fundamental unit, it is the generator of the infinite cyclic 

group which with plus or minus will give you the set of all units.  

So, this proves that the group of units is actually isomorphic to Z cross Z by 2Z the plus part 

and the negative part these correspond to the group Z by 2Z and then eta naught is generating 

the infinite cyclic group. So thus the units, thus this group is isomorphic to Z by 2 Z cross 

integers. So, we have proved Dirichlet theorem completely for the quadratic case and we 

have also obtained the fundamental unit eta naught.  
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Let us try to do an example, so we have d equal to 2 we are looking at remember we are 

looking at solutions to u square minus 2v square equal to plus or minus 1. The u and v are 

integers because our d is not congruent to 1 modulo 4 when d is congruent to 1 modulo 4, you 

have that the u and v can be half the integers but here, u and v are integers. Integers, we have 

also noticed that when you look at the fundamental unit u plus v root d, then both u and v are 

positive. 

So, we should start with the first 1, which is 1 and 1. So, we will look at remember, our d is 

equal to 2. So, 1 plus (root d) root 2, root 2 alone is not a unit, we will look at 1 plus root 2 is 

this a unit, we multiply by its conjugate and we get this to be 1 minus 2 which is minus 1, 

(bravo) we obtained a unit and this is clearly the smallest unit if you have u and v to be 

integers which are positive, then u and v will be bigger than or equal to 1.  



And clearly, the both u and v are positive, so, they will both be have to be equal to bigger 

than or equal to 1, so you get 1 plus root 2 to be the smallest element of the corresponding A. 

So, this is our fundamental unit, the fundamental unit here in Q root 2 is 1 plus root 2, its 

norm is minus 1. So, if you wanted to get something whose norm is plus 1, if you wanted to 

get a solution to the Brahmagupta equation, you have to now take the square of this 1 plus 

root 2. 

So, if you take the square of this, it will be 1 square plus root 2 square, so you get 3 plus 2 

times root 2 this gives solution to u square minus 2 v square equal to 1, here we had that this 

was a solution to u square minus 2 v square equal to minus 1. But now, we have a solution to 

u square minus 2v square equal to 1, 3 square is 9, 2 square is 4, 2 times 2 square is 8 and 9 

minus 8 is 1. 

So, this is how for the simplest case, we have found the solution, but what now, we want to 

do is to find the solution in the general case. So, we are going to start with D to be a positive 

square free integer and we are going to write down the solutions to the Brahmagupta equation 

u square minus dv square equal to 1. 
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So, we consider such a solution eta bigger than 1 four x square minus d y squared equal to 1 

then this eta will be of the form u plus v root d where both u and v are positive this is 

something that we have already seen, such an eta is going to be in the set capital A that we 

had defined earlier. So, here both u and v are clearly positive. 
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Moreover, u by v is going to be a convergent to root d. So, let us see how this comes about. 

So, here this u minus v root d is the inverse of u plus v root d, this is less than our u plus v 

root d because we have that this is less than u plus v root d because we have the number 1 

sandwiched between these two numbers, this is less than 1 and this is bigger than 1.  

So, we have that u minus v root d is less than u plus v root d. And ofcourse, we have that this 

is a positive number. So, that tells you that you that u has to be bigger than v root d and 

putting that here, we get that u minus v root d has to be less than 1 upon 2v root d. Since u is 

bigger than v root d; u plus v root d is bigger than 2 times v root d and so the reciprocal is 

less than 1 upon 2v root d. 

So, u minus v root d is these are both positive numbers we have u minus v root d less than 1 

upon 2 root d and therefore, root d minus u by v which is really 1 upon v, v root d minus u 

which is simply the mod of this is less than 1 upon 2v square root d which is further less than 

1 upon 2v square.  

So, this u by V is a rational number which is trying to approximate root d in a way better than 

the convergence would do we know that the convergence would have approximate root d in a 

good way that means pn by q n are close to root d by distance at most 1 upon q n square and 

in fact one of the two consecutives one of the each pair of consecutives convergents will have 

the property that one of them is less than 1 upon 2 q n square.  

And then we saw the proof that if anything tries to do better than convergents then that has no 

other option but to be a convergent. So, here we see that this u upon v is trying to 



approximate root d in a way better than the convergence and therefore, u by v is a convergent 

to root d. So, this is some nice situation, because we wanted to find a non-trivial solution to x 

square minus y square d equal to 1 and any such non-trivial solution bigger than 1 has to be a 

convergent 2 root d.  

We are happy with solutions bigger than 1 because all other solutions can be obtained by 

taking the inverses of these solutions in Q root d and putting a plus minus sign. The plus 

minus sign will not change the value of the norm, norm will still be 1. So, we are looking at 

solutions which are bigger than 1 and satisfy x square minus d y squared equal to 1 any such 

solution should give you the x upon y to be a convergent. But we are going to get more and 

more conditions on this convergence.  
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We first of all see that if you let root d be this particular continue the, if we consider the 

continued fraction expansion for root d we have seen that root d plus its integral part has 

purely periodic continued fraction expansion. This is a result that we have seen, which means 

that the continued fraction expansion for root d which will change from the continued 

fraction expansion of root d plus integral part of root d only in the first place because you are 

adding or subtracting an integer.  

But from second place onwards the periodicity has to start. So, you have that the continued 

fraction expansion will look like a1 a2 am, where m is your period of the expansion. And you 

can take m to be the smallest one where you have the repetitions. So, m is the period of the 

continued fraction expansion that you have the partial quotients getting repeated. So, from 



first step onwards, we should have that these continued fraction expansion partial quotients 

start repeating.  

So, you will have a1 a2 am, then again a1, and so on up to am, then again a1 and so on up to 

am, so we have that root d turns out to be a0. And then you have a1, a2, a3 and so on up to 

am bar, this is the continued fraction expansion for any root d. And ofcourse, we know how 

to compute the partial quotients, the complete quotients and the convergents.  

(Refer Slide Time: 24:50) 

 

But we claim that our uv which gives us a solution to the Brahmagupta equation so this uv 

comes from the solution to the Brahmagupta equation if it is pn by qn for some n, then n is 

odd. Why is this? This is because, we will write root d to be pn theta n plus 1 plus p n minus 

1 upon q n theta n plus 1 plus q n minus 1 this is a formula which we have already derived 

here thetas are the complete quotients.  

And now, we look at q n root d minus p n we simply multiply throughout this expression by q 

n and subtract pn and from this, this is also something that we have done in one of the last 

lectures, what we get here is that this is minus 1 to the power n upon qn and theta n plus 1 

plus qn minus 1. So, this part turns out to be qn theta n plus 1 plus qn minus 1 if n is even 

then this quantity becomes positive because the numerator is positive and denominator here is 

anyway always positive.  

So, this turns out to be positive and then we get that p n minus q n root d is negative, but that 

cannot happen because our pn plus qn root remember pn and qn are u by v this is u by plus v 



root a this is a positive number and its inverse then cannot be a negative number. So, if u 

upon v is pn by qn for some n then n has to be odd. 

So, this is the first condition that we obtained, we have proved that u by d where u square 

minus v squared is 1 if u by d, we consider the rational number u by v then it has to be a 

convergent to root D. Moreover, if it is pn by qn for some n being a convergent that n has to 

be odd.  
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Further, we see that it is not just odd, but it is of the form l m minus 1 where l is some natural 

number and m is the period. So, here m is the period we will prove this also because, recall 

once again that we have root d to be pn theta n plus 1 plus p n minus 1 upon q n theta n plus 1 

plus q n minus 1 and if we consider if we expand it out by taking this denominator 

multiplying it to this side and then writing it out explicitly, we get p n minus q n root d into 

theta n plus 1 to be q n plus 1 root d minus pn minus 1.  

And therefore, if I multiply by pn plus qn root d to both the sides we get pn square minus q n 

square d into theta n plus 1 equals two on this side we get q n plus 1 root d minus p n minus 1 

excuse me this is minus 1 into pn plus qn root d which is again of the form some integer into 

root d plus another integer, but the integer that we get here is pn qn minus 1 minus pn minus 

1 qn.  

So, this is minus 1 to the power n minus 1, we have already seen that n is odd, so we get that 

this is root d plus C. Moreover, this is equal to 1, so we get that this is theta n plus 1. So, theta 

n plus 1 is root d plus an integer.  
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But we already have plus some integers C but root d already has this continued fraction 

expansion, this is how we begin getting the continued fraction expansion for root d. So, this is 

a naught plus C plus 1 upon theta 1. On the other hand, this would be a n plus 1 plus 1 upon 

theta n plus 2 because the complete quotient q theta n plus 1 it is integral part is a n plus 1 and 

then you would have the next remaining fractional part you will write it as 1 upon theta n plus 

2, but if you look at it from this point of view, the integral part has to be a naught plus c.  

So, this expression gives us that a n plus 1 is a naught plus C and then you should have that 

theta 1 is theta n plus 2 which means that the theta 1 is obtained after the n plus 1 steps. So, n 

plus 1 has to be a multiple of your period m, you may remember m was chosen to be the 

smallest possible such number where you get periodicity. So, n minus 1 is a multiple of m 

call it l m and therefore, we get n to be n plus 1, then l n plus 1 is lm minus 1 and so, we get n 

to be l m minus 1 for some natural number multiple of m.  
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Furthermore, these ls have to be 1, 2, 3 when m is even and 246 when m is odd, that is 

because we want our n to be odd, n has to be odd. So, if m is even then any lm is even and lm 

minus 1 is odd this is okay. If m is odd, we want lm minus 1 also to be odd the l has to be 

even because if you take l to be odd m to be odd lm will be odd into odd which is odd and 

odd minus 1 will be an even integer.  

So, the only possibilities are these possibilities. So, what we have done is that we have 

completely written down all possibilities for the ns where u upon v is the nth convergent, it 

remains to see and it will not take more time now, to see that any such convergent indeed 

satisfies the Brahmagupta equation.  
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So, we now have to see that all such convergents, what do we mean by such convergents? We 

are looking at u by v to be p n by q n, where n is of the form lm minus 1 and n is odd. We 

will prove that all such convergents also satisfy the Brahmagupta equation that is a simple 

check. So, this is what we do. So, we have this n and ofcourse then theta 1 is theta n plus 2 

because n is lm minus 1 n plus 1 is lm.  

So, theta n plus 2 is theta 1 and we use once again the previous formula and use this to write 

it eta 1 but we have that root D is a naught plus 1 upon theta 1. So, treat r1 is 1 upon root d 

minus a naught, we put this formula in this equation for the theta once, we would get some 

equation for root d and separating out we get finally, that p n is q n plus 1 minus A naught q n 

and p n plus 1 minus A naught p n is q n into 2d. 



So, when you expand this out this particular equation by putting theta 1 equal to 1 upon root 

d minus a naught we get 2 sides where you have some multiple of root d plus an integer equal 

to some another multiple of root d plus another integer and then these multiples of root d will 

have to be same and the integers then also will have to be the same. So, therefore, we get 

these 2 particular equations, we try to eliminate the a0 from these equations. 

So, you can eliminate a0 by multiplying this equation by p n and multiplying this equation by 

q n, but let us say with a negative sign. So, if you do that the we get here p n into p n we get p 

n square p n into p n and to this side we are going to multiply by minus q n, so minus q n 

square d this is we will have this q n plus 1 p n minus p n plus 1 q n, which we know is minus 

1 to the power n plus 1, but n is odd and therefore, n plus 1 is even and so, we get that this is 

equal to 1, so indeed p n and q n does satisfy the Brahmagupta equation.  

So, what we have proved is that any solution to Brahmagupta equation which is bigger than 1 

is a particular type of convergent to root d and moreover, if you take a particular type of 

convergent to root D that does satisfy the Brahmagupta equation. So, we have explained in 

complete detail the solutions to Brahmagupta equations, which are bigger than 1.  

And as we have discussed the set of units in the quadratic extensions, we see that all the 

solutions to the Brahmagupta equation can be now explained once you have these solutions 

with you.  
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There is also this x square minus d y squared equal to minus 1 we will simply mention the 

solutions to this, but we will not have time to prove this The answer is that when m the period 



when that period is even there is no solution. So, remember for root 3, we had the continued 

fraction expansion which was 1 comma 1, 2 bar.  

So, there the period is even after 2 stages you get repetitions then you are not going to get any 

solution to x square minus 3y square equal to minus 1 that can also be checked by using some 

simple arithmetic modulo 4. So, whenever m is even there are no solutions. Whenever m is 

odd the solutions are explicitly written down as follows that any such solution which is 

bigger than 1 is a convergent p n by q n where you are n is still lm minus 1, but l is now an 

odd integer 1, 3, 5 and so on.  

So here n has to be even that is quite clear because we want that minus 1 to the power odd 

has to come, and therefore your n has to be an even integer. This is where we complete our 

penultimate lecture. We are just going to tie up some loose ends in the next lecture. It is going 

to be a short lecture. I look forward to see you there. And thank you very much. 

 


