
A Basic Course in Number Theory 

Professor Shripad Garge 

Department of Mathematics 

Indian Institute of Technology, Bombay 

Lecture 38 

Binary Quadratic Forms 

Welcome back. We are studying the Jacobi symbol, which is a generalization of the Legendre 

symbol. So remember that we had the notation a by n, a can be any integer, n is a natural number 

to begin with. And then we define this Jacobi symbol a by n by using the prime factorization of 

n. If n was p1 power alpha 1, p2 power alpha 2, pk power alpha k, we defined the Jacobi symbol 

a by n to be a by p1, the Legendre symbol power alpha 1, a by p2 power alpha 2 dot dot dot a by 

pk power alpha k. This was our definition of the (Legendre) Jacobi symbol and then we saw that 

there were several properties that the Jacobi symbol satisfied in line with the Legendre symbol. 

The most important of those were the quadratic reciprocity laws which are here in front of you in 

this slide. 
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So we have that minus 1 power minus 1 sub n the Jacobi symbol is equal to minus 1 to the power 

n minus 1 by 2. So the Jacobi symbol can be computed for minus 1 in the line with the 

computation for the Legendre symbol. If n is odd then 2 by n has the same formula as was in the 

prime modulus case in the Legendre symbol case that the Jacobi symbol 2 by n is congruent to 

minus 1 is equal to minus 1 to the power n square minus 1 upon 8 and finally we have that 



whenever m and n are odd integers, odd numbers natural numbers then m by n and n by m satisfy 

this generalized reciprocity law.  

So these 3 properties can be proved using the similar properties for the Legendre symbol so we 

are not going to give their proofs. However, note that for minus 1 we have used the Euler 

criterion. There was the Euler criterion for the Legendre symbol which was that minus 1 sub p, 

minus 1 upon p was minus 1 to the power p square minus p minus 1 by 2. So that Euler criterion 

which was true for any integer a provided your modulus was a prime p now, need not be true for 

the Jacobi symbol in general.  
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So the Jacobi symbol does not satisfy Euler's criterion, which is to say that these 2 numbers, the 

Jacobi symbol value a upon n and the value a power n minus 1 by 2, they need not be same and 

they need not even be same modulo n. So, of course we see here that a by n has the value 0, 1 or 

minus 1, and a power something is going to be much bigger if a is positive or it will be on the 

negative side if a is negative. So we cannot hope these numbers to be same but these are not even 

same modulo the number n.  

For instance, you may take a to be 8 and n to be 21, and you can check that these 2 numbers 8 by 

21 and 8 power 21 minus 1 by 2 which is 8 power 10. These are not same modulo 21. So this is a 

failure of the Euler's criterion in general for Jacobi symbol. However, mathematicians have a 

knack of turning failures into very useful things. So this failure of the Euler's criterion in the case 



of Jacobi symbol can be used very effectively when we are doing primality tests. So this is useful 

in several, in fact it may be called the basis of primality tests for several of them. So, how do we 

go about this? 
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Suppose you have a number n. It is a large number let us say and you want to know whether this 

is a prime number. So you want to check the primality of this natural number n. Then what you 

do is the following thing that we then check whether the Jacobi symbol satisfies Euler's criterion 

for some random integer a. So now you may ask whether we can compute the Jacobi symbol 

without knowing the factorization of n. Remember, we are going to test the integer n for 

primality.  

So we do not know whether n has a factorization or not. If we already knew that n has a 

factorization then we would not need to check n for primality. However, we can use quadratic 

reciprocity laws. The analogues of the reciprocity laws to compute a by n without knowing the 

prime factorization of n. That is where those analogues of the reciprocity laws are useful. So you, 

we will compute the Jacobi symbol a by n without knowing the prime factorization of n. We will 

then also compute a power n minus 1 by 2. Computing powers of some certain integer is a very, 

is not a very difficult thing for a computer.  

So what the computer does is that it can quickly compute various squares. So if you are given a, 

it will compute a square, it will compute the square of a square which is a power 4. It can 



compute a power 8, a power 16 and then whenever you want to compute any power of a you 

have to take product of these various squares that you have competed in a suitable order. If you 

wanted to compute a cube, then you have to take product of a with a square. If you want to take a 

power 15, then you should take product of a, a square, a power 4 and a power 8 because 8 plus 4 

plus 2 plus 1 will give you 15.  

So computing powers is a relatively simpler thing when you are using computers and similarly 

computing congruences is also a relatively simpler thing. So number 1 is that you can compute 

Jacobi symbol using the reciprocity laws, number 2 is that you can compute powers of a and go 

modulo n and then you simply check whether these 2 quantities are the same. So what we do is 

that we compute the Jacobi symbol and see whether the Jacobi symbol a by n satisfies Euler’s 

criterion for this integer a.  

This is a randomly chosen integer a. If it does not, then n is not a prime because the prime 

modulus case will give you Legendre symbol and Legendre symbol does satisfy Euler's criterion. 

So if a by n is not congruent to a power n minus 1 by 2 modulo n, then n cannot be a prime. So 

this is a very nice primality test. However, unfortunately, you may happen to choose a, for which 

the Euler’s criterion may hold. Can we then say that n is a prime? No, but what we will then say 

is that n is probably a prime.  

So this is where advanced things among primality tests come into the picture. So the tests will 

tell you how many integers you should check, for how long you should go checking meaning if 

you start from 1, the most natural thing is to check the Euler’s criterion for a equal to 2. If that 

holds then those numbers have some certain names, then you will check for n a equal to 3 and so 

on.  

So how far do you need to go to check these criterion and this is where some probabilistic things 

will come into picture that when can you see that it is a prime, by what probability and so on. So 

these are the things which do not come into our syllabus and we will not discuss. However, I just 

want to add one more thing. So we started with Legendre symbol which was a by p where a was 

any integer and p was a prime number. Then we went to Jacobi symbol which was denoted by a 

by n, a is any integer and n is a natural number and there is a slight generalization of this which 

is called Kronecker symbol.  



So there is this mathematician Kronecker in the 19th century who introduced this symbol where 

you allow n also to be any integer, non zero integer. If n is 0, then there is some certain value 

which we take by convention. So the Legendre symbol, Jacobi symbol and Kronecker symbol 

can be studied and there are relations of these with some character values, the Dirichlet L 

function and so on which we are not going to discuss in this course.  
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So with this we come to the end of our third theme, which is broadly called the theme of 

quadratic residues where we determined whether a certain integer is a square modulo, a prime p 

or not using various other things. We were able to compute it very effectively for many primes 

and many integers. Then we (generalise) generalized the Legendre symbol to the Jacobi symbol 

and we saw one application of the Jacobi symbol in the primality tests. Our next theme is a very 

interesting theme. It is on binary quadratic forms. So this is a slight generalization of what we 

were studying in the last theme. So remember, last theme started with finding equations solutions 

to the quadratic equation. So these were equations in 1 variable. Now we are going to take 2 

variables.  
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So, we consider binary quadratic forms over integers which means that we are going to take 

these expressions. So here we have so let us start noting various things. We have 2 variables 

now, x and y and this is why we call them binary. So the (nome) name binary comes because we 

have 2 variables, namely x and y. Quadratic comes because the degree of the polynomial here is 

2 and form comes because the polynomial is a homogeneous polynomial. And where do integers 

come, integers are there because the coefficients of this polynomial are taken from integers.  

So these things therefore as you would expect are true in more generality, you can take forms not 

necessarily quadratic, but you can take cubic forms, quadratic forms, quantic forms and so on. 

You may take binary forms, ternary forms, quaternary forms and higher number of variables in 

the forms and you may take them over not necessarily over the set of integers. You may take 

them over a general sets. What we are then going to do is to evaluate these forms.  

So here since we have taken a, b, c to be integers, we will be easily able to put values for x and y 

from the set of integers and compute the value. So when you take a, b, c from a general set, a set 

general than integers, we expect that the set b such that you can take products over the set, you 

can take additions over the set and so on. So this is the structure what is called a ring. We have 

earlier studied the structure called a group and we saw some applications of that. Here we will 

not use but let me just tell you that you can take forms, the generalized versions of these forms 

over rings.  



So here we are going to take them over the ring of integers. So we have this set z of integers, 

which is a ring and over these ring of integers we are going to take binary quadratic forms. We 

are not going to take higher order forms. We are not going to take forms in higher number of 

variables. This, these are enough for us. These are going to give us lot of interesting properties. 

So at the moment these are quite good for us. So, these are the forms that we are going to study 

and given any such form f, the thing that we would like to compute is the set of values taken by 

this form f. So given any such form what we are interested in computing is the set of values f m 

comma n where m comma n are integers.  

So these are the numbers that we want to compute. So not one number. that would be a very easy 

thing if I want to just compute f of 0, 0 that would give me 0, it is a homogeneous form. If I want 

to compute f of 1, 1 that would simply be, a plus b plus c. So those are easier things but I would 

like to compute the set of values where m and n are taken to be all integers. This is the set that I 

would like to compute. Now, it is quite possible that you may have 2 different looking forms and 

the set of values given by them may turn out to be the same sets.  
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So, this can actually happen many times. It happens quite often. So, there might be several 

different forms, which may have the same value sets and an example can be readily given. You 

may take these forms. So these are 3 forms. The first form is f of x comma y equal to x square. 

There is no x y term, there is no y square term. So the coefficients b and c are both 0, but we 



have the form to be x square. So you are going to get all squares. Whenever you put value for x, 

any integer in the place of x, you are going to get the square of that integer.  

So all squares are represented and the whole set of values is the set of squares. Similarly, the 

second form that you see here is nothing but x plus y whole square. So once again, whatever 

value of x and y you choose, the value of the form is a square and you can put y equal to 0 and x 

to be any integer and all squares are represented. So, the value set is the same as the set of 

squares. Similarly, this is x minus y whole square. So it is the same computation. So, these are 3 

different forms and even then we have that their value sets are the same.  
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So what we would like to do is to put some kind of equivalence relation on the set of binary 

quadratic form. So I will not keep mentioning the word binary or sometimes I will even forget to 

use the word quadratic but we should remember that we are always going to look at binary 

quadratic forms over integer. So we are going to look at homogeneous polynomials of degree 2 

in 2 variables with coefficients coming from the set of integers. So we are looking at these forms, 

and we would like to say that in some way one form is equivalent to another form.  

So, we will try to put some relation between these calling some of 2 of them to be related to each 

other or if you have all the properties, then the form, then the relation will be an equivalence 

relation. So one form will be equivalent to another form and we would also try to have this 

transformation, the relation so that the value sets turn out to be the same. So, what we will then 



do is that whenever we want to compute the value set of a given quadratic form, the given binary 

quadratic form, which may look difficult because a b and c might be big numbers, they might 

come from different signs and so it may happen that computing values by hand might be very 

different, very difficult.  

So we would then transform it to a simpler looking form and once you transform it to a simpler 

looking form, then we may be able to compute the value set more easily and if you also have that 

this transformation keeps the same value sets, then you would have computed the value set of 

your earlier form. This is what we are going to do. We will also have some certain invariants 

associated to these quadratic forms. So what do you mean by invariant?  

By invariant we mean that when you apply the transformations mentioned in the previous lines, 

these are the quantities which do not change. So these invariants which do not change and hence 

they are called invariants when we apply these transformations.  So these are the things that we 

hope to do. Number one is that, we will say that one form is equivalent to another form or one 

form is obtained from another form by some way. So we will give these transformations.  

We will go, we will give a method to go from one quadratic form to another quadratic form 

without changing the value set and there, we would also like to have this way to be invertible 

because I do not want, always know that I am going to go from a difficult form to a simpler form 

by this way. It may happen that you start with a simpler form, apply the transformation and you 

may get a difficult form. So the transformation should not be only one way. It should be both 

ways. It should be an invertible transformation. So we will see that there is a way to define this 

transformation. We will see that there is a relation that you can put on the set of binary quadratic 

forms which will also help you compute the value sets.  
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So this is what we are going to do. So here comes the definition. Let us start with 2 forms, 2 

binary quadratic forms. So you have the form f and you have the form g. So suppose your form f 

is given by a, b, c and g is given by a prime, b prime and c prime. So we say that these 2 forms 

are equivalent if one of these can be obtained from the other using the substitution x equal to p x 

prime plus q y prime and y equal to r x prime plus s y prime. Here we have that these p, q, r, s 

they are integers but this is a very important condition that p s minus q r has to be one. So you 

may have your form f which is given in terms of x and y. 

So you have f equal to a x square plus b x y plus c y square. Now, if you put instead of x, the 

value p x prime plus q y prime and instead of y, the value r x prime plus s y prime then you are 

going to get some expression in x prime and y prime which will remain to be homogeneous of 

degree 2 because our substitution is homogeneous of degree 1. Here we had degree of x to be 1, 

degree of x prime to be 1 and degree of y prime to be 1. So we are considering x prime and y 

prime to be new variables and we are writing x and y in terms of these new variables and the 

substitution is homogeneous of degree 1.  

Therefore the ultimate expression that f will change to will continue to be homogeneous. It will 

continue to be of degree 2 because there is no change of degree. So you will get a different 

expression. So you started with a x square plus b x  y plus c y square and when we had x, you 

would put a p x prime plus q y prime whole square plus b p x prime plus q y prime, r x prime 



plus s y prime plus c r x prime plus s y prime whole square. So this will be some a prime x prime 

square plus b prime x prime y prime plus c prime y prime square. This is our form g.  

So when you started with f and instead of x and y, we put these substitutions in terms of x prime 

and y prime. If we get the form g in x prime and y prime, then we say that f and g are equivalent. 

Now notice that in this definition we did not say that you have to obtain g from f or that you have 

to obtain f from g. It can be that one is obtained from the other. So it is clearly this relation of f 

and g is clearly a reflexive relation. Whenever f is equivalent to g, g is equivalent to f. This is by 

definition. Further you will see that the form f is equivalent to itself because you can take p to be 

1, q to be 0, r to be 0 and s to be 1.  

So if you take p equal to s equal to 1, q equal to r equal to 0, you are going to get ps minus qr to 

be 1 and you are going to get same thing. You are going to get x equal to x prime, y equal to y 

prime. So the form f is equivalent to itself. The form f is equivalent to g. Then g is equivalent to 

f. That is a slightly non-trivial thing. We will see that in a moment, but more importantly 

whenever f is equivalent to g and suppose g is equivalent to a third form h, then f is equivalent to 

h. So all these 3 properties are put together in a box and we call them an equivalence relation.  
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So we see that this relation is an equivalence relation. That means the relation satisfies 

reflexivity, symmetry and transitivity. So this is of course an equivalence relation and further the 



value sets of f and g remain the same. So we will see this in our next lecture, which we will 

continue on the same theme. So, I hope to see you in that lecture also. Thank you.  


