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Quadratic Residues 

Welcome back. We have completed almost half of our course and among the themes we have 

completed two major themes and we started with the third theme in the last lecture towards 

the end. I hope you are also as excited as I am about this theme. This is on quadratic residues. 
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So, this is our our third theme quadratic residues and what we are going to do in this is 

essentially to solve quadratic equations over Zn. But we saw that we will of course not be 

able to solve the quadratic equations for every coefficients, but we will need to take the 2 a to 

be an invertible element modulo N. 

So, a if you remember from last lecture was the coefficient of x square, so that a needs to be 

an invertible element and moreover a 2 also needs to be an invertible element. This is what 

we have seen in the last lecture and then we saw that to solve such an equation, it is enough 

to find square roots of various elements.  

So, what we are restricting ourselves at the moment is that we will look at elements which are 

invertible. So, these are elements in Un. And we want to compute square roots of these 

elements, so this is something that I have already remarked to you that Un is a group. We 

have that Zn is a ring and therefore Un the set of all invertible elements modulo n forms a 

group under multiplication. And now if I want to find what elements have square roots or 



 

what are those square roots further, the simplest thing would be to compute squares of every 

element.  

So, once you know, what are the squares and you would also know which element squared to 

what element and therefore in the reverse way you will know which are the square roots of 

your given element, whether it has a square root or not. And whenever it has what are the 

square roots, this is the knowledge we will have. So, we want to compute the set of all 

squares in Un.  
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This is our notation for the quadratic residues modulo n and this as we have noted these are 

nothing but squares of elements in Un. Now, there is one small thing which we are going to 

observe and this small remark is very useful in many of the computations that we are going to 

do later.  

So, this remark is that Qn is a subgroup of Un. So, perhaps we can also see a proof of this 

quickly. There are several ways to check when some subset is a subgroup. The essential thing 

is that you should check that it is closed under taking multiplication, 1 is there and further 

inverse of every element is also there. Or all these things can be combined in the following 

statements. 

So, we check that whenever a comma b are elements in Qn then ab inverse is also in Qn. This 

one statement will capture all the properties that you want to have. So, how do we have this 

statement? If you have a and b in Qn then a is square of some alpha, b is the square of some 

beta for alpha, beta in Un. And then it is a simple matter to check that ab inverse is the square 



 

of alpha, beta inverse square. So, ab inverse is the square of alpha beta inverse and therefore 

this is also in Qn. So, we have that Qn is actually a subgroup of the group Un of all invertible 

elements. And this one thing helps us quite a lot as we will see in the coming slides, but we 

also did some computations of Qn for some small integers n. Let me recall that for you.  

(Refer Slide Time: 05:38) 

 

 

We have we computed Q7 which was 1, 2 and 4. This is sitting in U7, which you remember 

is 1, 2 all the way up to 6. And Q8, it is simply 1, this is sitting in U8 which is the set of all 

odd elements up to 8. So, here we had only four elements in U8. And surprisingly there is 

only one element in Qn. Only the identity element is the square in Q8. In U8, that is the only 

square so there is only one element in Q8. 

 Whereas here in U7, we had six elements and their squares gave us a set of three elements. 

So, this is something which we see is a different behaviour because our 7 is a prime number 

and 8 is a power of 2. So, 7 corresponds to something which is an odd prime and 8 

corresponds to the oddest of the primes as we have started calling it, the even prime too.  

So, this is the behaviour that we are going to see. We will also see later that in most of the 

discussions we will off course be taking the n, to be odd. So, we will not look at the number 2 

or in fact any even number right now, we will only look odd numbers and so whenever we 

will also talk about primes we will only concentrate on odd primes. 



 

You know, as far as squares are concerned when you look at Z by 2Z, everything is the 

square. Z by 2Z is 0 and 1, 0 square is 0 and 1 square is 1. So, everything is a square only 

when we go beyond 2 then, we get some non square elements and so things get more 

interesting as you go beyond 2.  

So, that is the reason that among the primes we will not look at the prime P equal to 2, but we 

will look at odd primes and as we have seen at the beginning of the discussion of this theme 

that when you take the quadratic polynomial ax square plus bx plus c, you are going to have 

to divide by 2a. So, 2a, has to be invertible which says that a has to be invertible and 2 has to 

be invertible and so n will have to be an odd natural number. 
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This is our beginning statement that you start with a in Qn, then the number of square roots of 

a, so we are assuming already that a is in Qn that is something that we already assumed. So, a 

is already a square, then the number of square roots of a is given by the following formula. 
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This formula is 2 power k minus 1. Where, n is congruent to 2 mod 4. Remember that here 

we are not taking n equal to 2 because that is a case that we are not looking at. So, here we 

will start with 6 onwards. And so, therefore you are at least going to have k to be more than 

1. So, k will be 2 or above and therefore 2 power k minus 1 does make sense. If you are 

looking at n equal to 2 then k is 1. And then you have only 2 power 0 which is 1 so that is 

also correct. But at the moment we are not looking at the case n equal to 2.  

Here whenever 8 divides n we have the number to be 2 power k plus 1 which is 1 more than 

the number of primes and in all the other cases. So, here the other cases are where n is odd or 

n equal to 4 m where m is odd. These are the remaining cases. So, in all these cases we have 

that the number of prime factors if that is k then, the square roots of any given element in Qn 

is a fixed number that depends only on n and that is given by this formula.  

You will realize that this was the same formula we had for computing the number of square 

roots of 1. When we computed the solutions to the equation x square equal to 1 modulo n we 

got exactly the same formula and that is the same formula and the reason will become very 

clear to you. Once you recall that Qn is a subgroup of Un. 
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So, let us quickly prove this formula. The formula can be proved in the following way. So, 

we consider a group homomorphism call it phi from Un to Un. And this is defined by sending 

an a to its square. So, this is clearly a group homomorphism because our group is abelian. So, 

since Un is abelian, phi is a group homomorphism. And now by definition Qn is the image of 

the group Un under phi. Because we are looking at Qn to be the set of all squares in Un. So, 

these are precisely the image, this is precisely the image of the homomorphism phi.  

So, this is nothing but a square where a belongs to U n. This is what we have and we can also 

determine the kernel. So, the number given above and by above I mean in the statement of 

the result, is the cardinality of the kernel of phi. So, we have a cardinality of this kernel of 

phi. 

What is kernel in the language of group theory? Kernel is the set of all elements in Un which 

under the map phi go to the trivial element. But our map phi is defined by taking an element 

to its square. So, kernel is precisely those elements whose square is 1. And therefore, kernel 

is precisely the set of square roots of 1. These are precisely the elements satisfying x square 

minus 1 equal to 0 in Z by nZ.  

So, kernel has some quantity. So, the cardinality of this kernel is capital N which is defined in 

the previous slide given by 2 to the power k minus 1, 2 to the power k or 2 to the power k 

plus 1 depending on how 2 divides the number n and the number of prime factors of n. We 



 

have the number so that capital N will depend only on small n. And that is exactly the 

cardinality of the kernel.  
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Further we have this very basic statement coming from group theory. Further, if a is in Qn so 

a is alpha square then, there is a bijection so then there is a bijection between two sets. All the 

beta's in Un, where beta square is a, with all the gamma in Un, with gamma square equal to 1. 

And once you start with a beta here we will send the beta to beta alpha inverse.  

So, let us check that this is indeed a bijection. We will check it by using a different ink. So, to 

show that this is a bijection clearly we have to show that whenever you start with a beta here, 

its image beta in alpha inverse belongs to this set. But that is clear because beta alpha inverse 

square is beta square alpha raise to minus 2. You have fixed your alpha with the property that 

alpha square is a. And you also have that beta square is a, so this is equal to 1.  

So, have fixed beta, we have fixed an alpha and then for every beta in this set, call it capital A 

and this is our set kernel phi. Then we have this natural map and we will show that it is a 

bijection. It is a natural map only once you have fixed this element alpha. Alright, so what we 

have shown is that the map, let me call this map by theta. So, there is this map theta from a to 

kernel phi, this map is well-defined now. It is obtained by sending the element beta to beta 

alpha inverse.  

We want to show that this is a bijection so we should show that it is a one-to-one onto map. 

So, if there is a gamma in kernel phi. We take beta to be, we have to take a beta such that beta 



 

alpha inverse is gamma. We are now starting with an element in kernel phi, and we are now 

trying to define an element in capital A which under the map theta gets sent to gamma. So, 

we should construct a beta such that beta alpha inverse is gamma. But this beta should be 

gamma into alpha so that when you cancel out alpha you get gamma. 

This is quite clear. So, this beta now so this gives onto nis. And now we need to show one to 

one property. But if you have beta 1 alpha inverse equal to beta 2 alpha inverse that would 

imply that beta 1 is beta 2, because alpha is after all an element in Un. You can multiply by 

alpha to the both the sides of this equality beta 1 alpha inverse equal to beta 2 alpha inverse. 

So, you are cancelling the alpha inverse to get that beta 1 is beta 2. 

So, this says that the map is also 1 to 1. So, what we have now proved is that there is a 

bijection from the set capital A to the kernel of the map phi. And once we have this bijection 

we are now able to get our result. So, we would want to show that the cardinality of the set a 

is exactly the same as the cardinality of kernel phi and that will follow once we have that 

there is this bijection.  
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So, this bijection, will tell us that cardinality of the set A is equal to cardinality of the set 

kernel phi which is the numbers that we had earlier 2 power k minus 1, 2 power k plus 1 and 

2 power k. And if you remember this was n congruent to 2 mod 4, this was the case n 

congruent to 0 mod 8. And this is the remaining case. So, this completes our proof, whenever 

there is an element in Qn, then the number of all square roots of the number A, the element A 

is given by the cardinality of the kernel of the map phi.  



 

So, you see that once we have used that Qn is a subgroup. We know that it can be seen as 

image of this square map. And therefore, we are able to compute the cardinality of the kernel. 

And after all if you also remember some of the group theory you will see that the inverse 

image of every other element will give you a certain coset. And each coset will have the 

cardinality equal to the cardinality of the kernel. We see that here this A is nothing but the 

coset of the element alpha, this is what we have.  

So, the cosets will all have the cardinality equal to coset of the trivial element which is your 

sub Group by which you are going modulo. So, in this case it is the kernel. So, this is one 

very nice calculation. It will tell you that once you have some element to be in Qn it is going 

to have a large number of square roots and so we can somehow hope to compute the number 

of elements in Qn from this.  

You see after all what we have is that Qn being the image is also actually a subgroup of Un 

because you have this square map from Un and to Un, sending every element to its square. 

So, Qn is the image on the right hand side a subgroup and therefore its cardinality will have 

to divide the cardinality of the whole group, which is phi n. But because the kernel has 

cardinality capital N, then we know exactly how many elements there can be in Qn. 
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So, this follows from the earlier proof with cardinality of phi Un equal to cardinality of Un 

upon cardinality of kernel phi. So, this is actually cardinality of our subgroup Qn and here we 

have this to be cardinality Un is the Euler phi function, so I should not have used the same 



 

symbol phi here. So, let me write the Euler phi function in a different ink, upon N where N is 

this number. So, this phi is the Euler phi function.  

So, this corollary follows quite easily and we also have one more small result, which says that 

whenever the group Un has a primitive root. So, whenever the group Un is cyclic, then Qn 

will have exactly phi N by 2 elements. So, the second statement here follows quite nicely 

because our N is going to be 2 when Un is cyclic. 

This is because whenever your Un is cyclic, we know that the number of square roots of 1 is 

going to give you a subgroup and so you cannot have more than 1 cyclic subgroup of any 

given order inside a cyclic group. So, the number of square roots of 1, if there were more than 

2 square roots, then you will have multiple copies of cyclic groups of order 2 sitting in Un. 

This is something that we have remarked earlier as well. 
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But even here we can see that statement quite easily because it will follow from the above 

statement that Qn is a cyclic subgroup of Un generated by g square. Once we prove this then 

it will follow quite easily that the cardinality of Qn is exactly 1 by 2 of the cardinality of Un 

and so it will have phi n by 2 elements.  

And this statement is also quite easy to see because Qn is after all the squares of every 

element in Un. But every element in Un is some power of g. Because g is your primitive root, 

you have fixed a primitive root g. And then you are going to take the square. So, this is for i 

let us say in capital N. And therefore, this is nothing but a group which is generated by g 



 

squares. And so we get that Qn is the subgroup of Un which is generated by g square. So, 

here we have proved that every element of Qn is a power of g square and that already tells 

you that the cyclic subgroup Qn of Un is generated by the g square.  

So, you will have that there are exactly half the elements in Qn as they were in Un. And so 

the cardinality of Qn then happens to be phi n by 2. Where this phi is the Euler phi function. 

So, here there is one small thing where I would like to draw your attention to which is that we 

are taking n to be bigger than 2, if your n is equal to 2, of course that is the case that we are 

avoiding everywhere. But if you were taking n to be equal to 2 then U2 has only 1 element.  

And although g which is a primitive root for U2 which is 1 is itself a square. So, Q2 also has 

1 element and therefore this statement will not be quite true. So, that is one small rework for 

which we have to take n to be bigger than 2 because then we know that phi n is going to be an 

even number for every n bigger than 2 the Euler phi function is always an even number. Once 

we have this then the rest of the things follow quite nicely.  

So, what we are now going to do is to look very closely to the squares in general for the 

squares in Un. Try to devise a way to compute these squares and get some nice formulae 

about it. The punch lines that are going to come are the quadratic reciprocity laws. These are 

some very important laws and they have very interesting generalizations in higher dimension.  

Where instead of quadratic you have a cubic reciprocity law; a quadratic reciprocity law and 

so on and finally there is the pinnacle of algebraic number theory, which is Artin’s reciprocity 

law, but to go to that we must first learn the quadratic reciprocity law. We will go towards 

that in our next lecture. I hope to see you until then. Thank you. 


