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Chinese Remainder Theorem, the General Case and Examples 

Welcome back. We are looking at proof of the Chinese Remainder Theorem. We have done 

two baby cases k equal to 2 and k equal to 3. These two cases were easy, but they tell us how 

we can do the general cases. So, k equal to 2 case just to go through that orally very quickly 

was that we first solve for two systems of solutions x1 congruent to 1 mod n1 and 0 mod n2 

and x2 congruent to 0 mod n1 and 1 mod n2.  

So the x1 which was 0 mod n2 directly gave you that x1 has to be a multiple of n2 and so we 

write it as n2 k1 and the first part of that system of simultaneous linear congruences would 

then ask you for solving for this k1. So we will then have a system n2 k1 congruent to 1 mod 

n1 and we are solving for k1 which is guaranteed because n1 and n2 are co-prime. Similarly, 

you solve for x2 because x2 is multiple of n1.  

So x2 will be n1 k2 and then we are asking for n1 k2 congruent to 1 mod n2. So you can 

solve for k2 also and once you have solutions to these very special cases of simultaneous 

congruences you can solve the general case by taking linear combinations of these two. We 

have a similar situation when we had the case for k equal to 3, x1 was the system which was 

1 mod n1 and 0 mod all others n2 and n3. So x1 was a multiple of n2 n3.  

So we wrote x1 as n2 n3 k1 and we called that n2 n3 has C1 and then C1 n1 are co-prime 

because n1 had no common factor with n2 neither did it have a common factor with n3. So, 

n1 would have no common prime factor with the product n2 n3. So C1 and n1 are co-prime 

and therefore C1 k1 congruent to 1 mod n1 has a solution. Similarly, x2 was the special 

system where you had 1 mod n2 and 0 mod n1, 0 mod n3.  

So, x2 should be a multiple of n1 n3 and then you solve for k2 because n2 n3 the product 

which we call n1 n3 the product which we call C2 is co-prime with n2 and then similarly we 

do x3 and so on. So we are going to do the general case now. Let me just remind you with the 

statement of the theorem. We have n1 n2 nk.  
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This is the case that we are now going to prove. We have a k tuple of natural numbers 

consisting of pair wise co-prime integers. We have another k tuple of natural numbers a1, a2, 

ak and we are asking for the solution to the system x congruent to a1 mod n1, a2 mod n2, ak 

mod nk. The uniqueness part will be seen later. So now we are going to prove this general 

case.  
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So we now prove or we now solve the special system for each i,  i going from 1, 2, up to k 

and the special system is xi congruent to 1 mod ni and xi congruent to 0 mod nj whenever i 

not equal to j. So this was the system which we had in the last case, the case k equal to 3 

where we had x1 which was 1 mod n1, 0 mod n2, 0 mod n3, x2 which was 1 mod n2, 0 mod 

n1, 0 mod n3 and x3 which was 1 mod n3, but 0 mod n1, 0 mod n2.  

So similarly here we have this xi which is 1 mod ni and 0 mod nj whenever i is not equal to j. 

So if we define Ci to be n1, n2 dot, dot, dot ni hat dot, dot, dot nk. So here the hat means we 

are omitting this particular number, so what we are doing is that we are taking the product n1 

n2 nk and dividing by ni okay or to make it more precise we are looking at the product n1 n2 

ni minus 1, ni plus 1 up to nk.  

We are looking at this particular product and now we observe that since ni with nj is 1 for 

each j not equal to i. So Ci and ni are coprime and let us again recall what we were looking at 

for xi, xi we wanted to be 1 mod ni and xi was 0 mod nj for each j not equal to i. So this 

condition tells us that this xi is a multiple of Ci because each nj wherever j is not equal to i 

would divide xi again for each j not equal to i and therefore the product nj where j not equal 

to i divides xi, but this is simply Ci by our definition of Ci.  

So if we have that xi can be written as Ci times some integer ki and now we need to solve for 

this. So, we have Ci ki congruent to 1 mod ni, but this has a solution since Ci and ni are co-

prime. So thus each xi can be found. 
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And now the general solution is x equal to a1 x1 plus a2 x2 plus dot, dot, dot ak xk. So, if you 

were to look at it modulo any particular ni so mod ni if we go then x is congruent to 

remember mod ni each of the xi where i is not equal to j is going to give you 0. So the only 

thing which survives in this is ai xi which is congruent to ai because xi is now 1 mod ni. So 

this is our solution to the general system of the simultaneous linear congruences.  

So once again we solved very special systems which were giving 1 mod a particular ni and 0 

mod all other njs. Then the solution will be multiple of the product of these njs and using the 

property that since each of the nj is coprime to ni the product of nj is also coprime to ni, we 

have a solution to that particular special system of simultaneous congruences and then we 

have a general solution.  

So now that we have proved the existence of a solution we go towards proving the 

uniqueness. What is the meaning of uniqueness before that let me write what we have done 

and what we are yet to do. 
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So, thus we have proved the existence of a solution and now we go towards proving the 

uniqueness of this solution modulo n which is the product of this k natural numbers. So what 

is the meaning to say that we are looking at uniqueness? It means that if you have two 

solutions. Suppose I have a natural number alpha which satisfies that simultaneous system of 

linear congruences. 

So I would have alpha congruent to a1 mod n1, alpha congruent to a2 mod n2 so on up to 

alpha congruent to ak mod nk and suppose we have one more natural number beta satisfying 

the same then alpha and beta should be congruent to each other modulo n this is what we 

want to prove. So, let us write it if alpha, beta they exist in let say natural integers meaning 

why only natural numbers. 

Such that alpha congruent to ai mod ni and beta also congruent to ai mod ni then alpha is 

congruent to beta mod n. This is the statement that we are to prove, this is the statement that 

we want to prove. So, let us see how one can prove such a statement.  
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So since we want to show that alpha and beta are congruent modulo n we must look at alpha 

minus beta and we have that alpha is congruent to ai modulo ni and beta is also congruent to 

ai modulo ni. So mod each ni we are going to get that alpha minus beta is 0 and this is to say 

that each of the ni is going to divide the product alpha minus beta, but if ni divides alpha 

minus beta and we also have that ni are pair wise coprime.  

Therefore, the product ni is going to divide alpha minus beta which says that n divides alpha 

minus beta or that we have alpha congruent to beta modulo n. So, let me make some 

comments about this particular statement that when you have some set of co-prime elements 

divide an element then the whole product goes and divides it. So, how do we think about 

this? So let me state that here and prove it for you. 
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So we now prove that if ni divide gamma for each i then product ni divides gamma since ni nj 

is 1 or all i not equal to j. Okay so this tells us that first of all you have n1 dividing gamma 

and therefore gamma can be written as n1 into let say m1. Once you have written gamma as 

n1 m1 we consider the case that n2 divides gamma.  

Once you have n2 dividing gamma, gamma is n1 m1. Now each prime factor of n2 will have 

to divide m1 because n1 and n2 are pair wise co-prime. So all the prime factors of n2 will 

divide m1 with the same power so n2 will divide m1 and hence the product n1 n2 divides 

gamma and then by induction then the proof follows by induction.  

So the only thing to note here is that we have the fundamental theorem of arithmetic which 

guarantees that the primes occurring in a factorization are unique with the powers also being 

uniquely determined by the integer n that is the only thing which will give us all these 

solutions. So what we have now done is we have completed the proof of the Chinese 

Remainder Theorem. 

We proved the existence of solution by proving the existence of solution for a very special 

case of simultaneous congruences and then we also have proved the uniqueness modulo n. So 

after having proved this impressive theorem the next thing to do is to try our hand at some 

problems. So we look at this particular problem to begin with. 
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This systems says that we want to solve for x congruent 1 mod 4, x congruent to 2 mod 3 and 

x congruent to 3 mod 5. So, here our a1 is 1. Let us compute, let us write all our tuples so n1, 

n2, n3 are 4, 3, and 5 in that order and clearly we have that they are all pair wise co-prime 

then we have a1, a2, a3. So, these are 1, 2, and 3 and then if you remember the proof that we 

had done we had actually looked at C1, C2, C3. So C1 was n2 n3.  

Therefore, this is 15, C2 was n1 n3. So that is here 20 and C3 was n1 n2 so that product is 4 

into 3 which is 12 and then once again we observe that 4 and 15 are co-prime, 3 and 20 are 

co-prime and 5 and 12 are co-prime. So we construct three systems from this where we are 

asking for inverse of each of these Ci modulo ni. So we solve for Ci ki congruent to 1 mod ni. 

This is the system that we are going to now solve first. So 15, 20 and 12 modulo 4, 3 and 5.  
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So the first one is the product of these two so 15 k1 congruent to 1 mod 4 and then we see 

this quite easily that here k1 has to be 3. So, x1 equal to 45. After that we look at 4 into 5 

which is 20 k2 congruent to 1 mod 3 which will give us so remember 20 itself is congruent to 

2 mod 3. So if I multiply 20 by 2 I get 40 which is congruent to 1 mod 3. So k2 is 2 and x2 is 

40 and similarly we solve for x3 by asking for 12 k3 congruent to 1 mod 5 and then we 

observed that k3 is 3.  

So we have x3 equal to 36. We can quickly observe that each of these have the required 

properties that 45 is divisible by 5 and 3 and is congruent to 1 mod 4. Similarly 40 is divisible 

by 5 and 4, but is congruent to 1 mod 3 and 36 is divisible by 4 and 3 and is congruent to 1 

mod 5.  
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So let me write it here once again we have 45, 40, and 36. These are the values of x1, x2, x3 

and to compute the final answer we have to simply multiply the xi by ai and compute the 

final answer. So x is 1 into 45 that is simply 45 plus 2 into 40 that is 80 plus 3 into 36 which 

gives you 108. So, we have 5 plus 8 gives you 13 so you have 1 coming out and then 8 plus 4 

is 12 plus 1 gives you 13 so you have 3 and 1 more coming out. 

And then finally you have 233, but we should also go modulo the product of the 3 moduli 

which we have here, so 4 into 3 into 5 which is 12 into 5 which is 60 and thus our answer is x 

is congruent to 53 mod 60. So I will just write 60 here and we can easily check that when we 

go modulo this is what we always tell all the school students that once you have computed 

the answer you should check it again.  

So when you go modulo 4 for 53 you see that 52 goes out and what is remaining is 1. When 

you go mod 3 you see that 51 is subtracted and what is left is 2 and when you go modulo 5 

then from 53 you subtract 50 and what you are left with is 3. So the answer is indeed 53 mod 

60. Let us do one more problem before we finish this lecture.  
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So this problem is similar. We want to solve this system of the simultaneous linear 

congruences and I will now be slightly fast because you know the method already. So you 

will write n1, n2, and n3 in the order 7, 9, and 4 and we have a1, a2, and a3 which are nothing 

but 2, 7, and 3 and then finally we need to compute C1, C2, C3. So, remember once again C1 

is the product of n2 n3 so this is now 36. 

C2 is the product of n1 and n3 which is 7 into 4 so that is 28 and C3 is n1 n2 which is the 

number 63. So, now we want to solve for xi to be Ci ki congruent to 1 mod ni. This is the 

solution. So, we need to solve for the k. So, we go to the next slide, but remember we have 

36, 28 and 63 as the Ci.  
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So C1, C2, and C3 are 36, 28, and 63 and I want to solve for k1. So k1 should give me the 

property that 36 k1 should be 1 mod 7, but 36 is already 1. So we have that this is 1 into k1 

congruent to 1 modulo 7 and therefore k1 is 1. So, I get the final answer is that k1 is 1. I will 

solve similarly for k2 which should have the property that 28 k2 should be congruent to 1 

modulo n2 which is 9, but 28 already is 1 mod 9. 

So this gives me k2 congruent to 1 mod 9 and therefore k2 is 1. So we get k2 also to be equal 

to 1. We should now solve for k3 with the property that 63 k3 is congruent to 1 mod 4, but 63 

is 3 so we should solve for 3 k3 congruent to 1 mod 4, but 3 k3, the k3 should be equal to 3 

because 3 into 3 is 9 which is 1 mod 4 so k3 has to be equal to 3. So these are the values 

which we obtain for k1, k2, k3 and from these we should now obtain the xi, x1, x2, x3.  

Remember x1 is C1 k1, x2 is C2 k2 and x3 is C3 k3.  
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So x1 is 36 into 1 therefore this is 36, x2 is 28 into 1 so that is simply 28 and x3 is going to be 

63 into 3 so I hope you have your multiplication tables with you it gives you the number 189. 

So 36, 28, and 189 these are the x1, x2, x3. 
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36, 28 and 189 this is x1, x2 and x3 and now what we should do to compute the final answer 

is to take x to be summation ai xi. So I will multiply to 36 by 2 I get 72 then to 28 I multiply 

by 7 so 28 into 7, 28 is already 7 into 4, so that gives us 49 into 4 and 49 into 4 is 200 minus 

4 because 50 into 4 is 200 so we get it to be 196 plus 189 into 3. So this is the product that we 

have to do in our head.  



9 into 3 gives us 27 so we have 7 and then there are 2 left and 18 into 3 are 54 and we add 

those two to get 567. So the final answer here is 7 plus 6 is 13 plus 2 is 15, so we write 5 and 

1 is left, 6 plus 1 is 7 plus 9 is 16 plus 7 is 23 so we have 3 and then there are 2. So 5 plus 2 is 

7 and 1 8. 835 this is the answer, but we have to go modulo the LCM which is 9 into 7, 63 

into 4, 63 into 4 is 252.  

So, we need to subtract multiples of 252 from this number. We multiply 252 by 3 to get 756 

after subtracting this from this we get 5 makes 15 minus 6 is 9, you have 1 here 383 minus 

76. This becomes 7. So the answer is 79 mod 252. Let us just verify quickly that 79 is indeed 

the answer. So, when you go modulo 7 to 79, 11 into 7 are 77 and what we are left with is 2. 

When you go modulo 9 you will remove 72 what is left is 7. 

And when you go modulo 4 of course 76 are removed and what is left is 3. So, we have 

successfully applied the Chinese Remainder Theorem to apply these two systems of linear 

congruences. What we are going to do in the next lecture is to look at some more complicated 

systems and try to use Chinese Remainder Theorem by doing some modifications to the 

system. So I hope to see you in the next lecture. Thank you. 


