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Solving linear polynomials modulo n – I 

Welcome back, we are discussing Congruence. This is an equivalence relation, modulo n, 

given a natural number ‘n’. After seeing some basic properties of congruence classes, we did 

some very basic examples, computing products, divisions, takings powers, etcetera. Let me 

just remind you about that.  
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These four are the problems that we did in one of the previous lectures. 13 square modulo 5, 

15 into 59 modulo 75, where if you recall we replaced 59 by negative of 16, and then 15 by 3 

into 5. So that made our calculations quite easy. Then we computed 25 up on 16 modulo 79. 

And we observed that 16 into 5 is 80 that is 1.  

Mod (75) 79, so 16 inverse modulo 79 is 5. And therefore 25 up on 16 is simply 25 into 5 

modulo 79. And so that is how we did it. Then we computed 3 power 8 modulo 13, so we 

kept on taking various powers and saw what answer we received. These were some of the 

numerical problems then we also turned to some theoretical problems.  
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So the very first one was this one that is 6 divides a into a plus 1 into 2a plus 1, for every 

natural number a. We gave two proofs for this. We first considered every residue class 

modulo 6. There are six such classes and we verified that the product a into a plus 1 into 2a 

plus 1 for every such residue class, is 0. That would show that 6 divides the product a, a plus 

1, 2a plus 1 for every a in n.  

Later we also saw that 6 divides a number if and only if 2 divides the number and 3 divides 

the number. And so initially the five non-trivial classes because if a is 0 mod 6, then of 

course, 6 will divide the product a a plus 1 2a plus 1. That so we had to compute the values 

for five non-trivial residue classes modulo 6. This was reduced to computing it to three non-

trivial classes, one non-trivial modulo 2, and two non-trivial modulo 3.  

So just this basic observation that 6 divides a number if and only of 2 divides it and 3 divides 

it, made our computation very easy. So we went ahead with that and formulated a very 

general statement which is that if you have a prime factorization for n which is pi power ni, 

product pi power ni, then two numbers a and b are congruent modulo n if and only if a is 

congruent to b modulo pi power ni for every i.  

That would then if you were, so the initial fifth problem was modulo 6, if it was say modulo 

24, then it reduces to checking it modulo 8 and modulo 3, or if you had a problem modulo 

120, it would reduce it reduce it to checking modulo 3, modulo 8 and modulo 5. So 120 

would give you 190 non-trivial classes, whereas these together will give you a much smaller 



number. This is how fundamental theorem of Arithmetic is very useful in doing several 

computations in number theory.  

Finally we saw one application to show that this polynomial x to the 5 minus x square plus x 

minus 3 has no integer solution. We saw that if you go modulo n equal to 4, then there are 

indeed no solutions to this polynomial. And therefore there cannot be any solution in the set 

of natural numbers, or integers if you wish. So I will go one more small problem, and then we 

will develop some more theory or look at some more theoretical results. So this problem is as 

follows.  
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This is something that I have mentioned in when we were closing out the theme of primes 

and now we have techniques developed that we can use and prove this result, that if you have 

a non constant polynomial f of x whose coefficients are all integers, and if you say that this 

polynomial takes only prime values whenever you input a natural number then that is not 

possible, so the precise statement is that there is no non-constant polynomial fx with integer 

coefficients, which takes only prime values on natural numbers.  

So here we may just add this statement that, we are talking about this on. Here we may take x 

in n or x in z. Both the possibilities will give us the solution. So how do we go about proving 

this? The proof is quite simple. I am not going to give you a minute this time to think about 

the proof. I will tell you the proof myself. So suppose you have take your favourite integer, 

take your favourite natural number, say 8.  



So let a be a natural number and consider the function value at a. So the statement says we 

want to prove that there is no such non-constant polynomial so to begin with we assume that 

there is one, one such polynomial fx. This is our assumption. And then what we do is that we 

will start with the natural number n, consider the value fa and the assumption on f is that f of 

a is a prime.  

So since, so let, f of a equal to p and we know that this is a prime. Now there is another thing 

that we have learnt, which is that when you take two natural numbers which are congruent 

modulo n, then any integer polynomial evaluated on those numbers will give you values 

which are also congruent to modulo n.  
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So, if we take b to be a plus p, then a is congruent to b modulo p, because the difference is 

divisible by p. So b is congruent to a mod p. And then what we get is that fa has to be 

congruent to fb mod p. But this is 0 mod p, because this is actually p, so since this is p, this is 

congruent to 0 mod p. And you can do this for every natural number which is congruent to a 

mod p. So we get, so thus p divides f of b, but f of b should also be a prime because a plus p 

is a natural number after all.  

So f of b should also be a prime and here p divides it, p is a prime if f of b was not equal to p, 

then we would get a contradiction, because we would have the number fb which would have 

one fb as its two divisors, and then here we are getting one more divisor, in that case fb 

cannot be prime. So the only way that f of b can be a prime is that it b equal to p. So now if I 



take any further integer so b plus p, b plus 2p, b plus 3p and so on all those values will be 

equal to p.  
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We repeat it by the same way so. In the same way, f of a plus n p is p for every natural 

number n. and what it tells us is that then the non-constant polynomial fx minus p has 

infinitely many zeroes. So we have that f of a is p, f of a plus p is p, f of a plus 2p is p, and so 

on, f of np is going to be b, and since the polynomial fx is non-constant, by subtracting p 

from that we will still get a non-constant polynomial. 

If fx minus p becomes a constant polynomial then fx will be p plus that constant polynomial 

and therefore fx would be constant. So since fx is non-constant, fx minus p will remain non-

constant and now we have infinitely many zeroes for such a polynomial. A polynomial of 

degree n can have at most n roots, at most n zeroes in complex numbers.  

And since we are getting infinitely many zeroes here, this polynomial has to be a constant 

polynomial equal to zero. And that tells us that fx has to be equal to p, for all x, which says 

that f has to be a constant polynomial. So this contradiction proves the result, which 

completes the proof. So let me go through this proof again. What we did was simply we took 

any integer a, evaluated the polynomial at a.  

That gave us a prime number because the non-constant polynomial should give us a prime, 

for every integer or for every natural number, whichever set you are working with. Once you 

get f of a equal to b then we will look at f of a plus p, call that b. Now this b is congruent to a, 



modulo b, therefore, the function value the value of the polynomial f at a and a plus b will be 

congruent to each other modulo p.  

This is where we are using that the function, the polynomial has integer coefficients that is an 

important thing here, so p will divide f of a plus p, but f of a plus p, f of b that should also be 

a prime and if a prime divides another prime then both the primes better be equal otherwise 

we get some contradiction, so f of a plus p is p.  

So f of 2p will be p, by the same method and so on, that gives us that there are infinitely 

many natural numbers of the form, f a plus np, such that the polynomial f evaluated at all 

these infinitely many values will give us the same constant p. And that is the contradiction, 

because the non-constant polynomial number one can have only finitely many zeroes and 

therefore, it can have only finitely many points where same value is taken there.  

It cannot happen that a non-constant polynomial takes infinitely many, take one value at 

infinitely many points, because you can just subtract that value and get a contradiction. So, 

what we have done so far, after having defined the congruence and so on, have studied 

several possibilities for solutions modulo the congruence and we also proved that one 

polynomial does not have a root in integers, because we do not have roots for that modulo 4.  

So the next question comes, when do we get roots? Modulo and integer n, or modulo a 

natural number n. But before we go on, we should begin, we should set up the notation so 

sometimes I may use this.  
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We have been working with this arithmetic of residue classes modulo n and the residue 

classes modulo n will be denoted the set of all of these, will be denoted by z, which stands for 

integers subscript n. So I will just call it zn, if you know a little bit more about algebra, 

maybe the group theory or the ring theory, and so on.  

Then you will immediately notice that this zn is nothing but the quotient of z modulo n z, 

whether you are looking at it from group theoretic point of view or ring theoretic point of 

view, it is all the same. So now we go towards finding conditions which will guarantee that 

there are solutions to congruency equations. Before, we go to higher degree let us first look at 

degree one.  
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So suppose we want to solve the congruence relation, the congruence equation, of the type ax 

plus b is equal to c modulo n. So we are working in zn and we want to solve ax plus b equal 

to c. In that set, in the set of residue classes modulo n. Now here the b can be put on the other 

side. You can add n minus b to both sides, and that will tell you that ax plus b plus n minus b, 

this is going to be congruent to n minus b plus c modulo n.  

So these b gets cancelled because you are allowed to do the addition and subtraction, and the 

n is anyway zero because you are going modulo n, this n is also zero modulo n, so we get ax 

equal to c minus b mod n. What we have done simply is that, we have moved this b to the 

other side with a negative sign that is all that we have done. So this says that we need to be 

able to solve the linear congruence ax plus b congruent to c mod n, that b is really 

superfluous.  
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You can solve for ax equal to k modulo n. It is enough to solve for this. So we will take 

various possibilities of k, various possibilities of a, having fixed an n. And we want to know 

when we can have a solution, when we can have a solution to this linear congruence, when 

there can be a root to the polynomial ax minus k, or when there is a solution to x equal to k 

modulo n, this is what we want to do.  

Now there are two problem as we have seen earlier that first of all there need not be a unique 

solution. This is something that we have seen earlier already in the clock arithmetic, we have 

seen. So there may not be a unique solution, you may have multiple solutions. For instance 

2x congruent to 8 modulo 12.  

So if you remember x equal to 4, and x equal to 10 these were the two solutions that we 

obtained. So this is one type of a problem that we may not get a unique solution. But at least 

we have a solution there may be another type of a problem that you may not get even the 

solution.  
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Sometimes we may not get any solutions at all. How can this happen so, let me give you an 

example. So consider for an instance this 2x congruent to 9 modulo 12, so what do we want 

to have here. We want to have is of, you can of course check. One can check by looking at 

elements of z12 that the above congruence has no solution. This is of course something that 

you can do, of course you have to just multiply by 2.  

There are twelve possibilities; there are 12 elements inside 12. So you simply compute 2 into 

x for each of them and check whether you are getting 9 as the answer. But there is another 

simpler method, which is as follows. If x in n was a solution to the congruence then 12 

divides 2x minus 9. So this number has to be even, because it is a multiple of 12.  

2x minus 9 is the solution, you know if you are getting confused with the x, being taken to be 

the same elements. Let us take it to be x naught, so 2x naught minus 9 is an even number 

because it is divisible by 12 and 2x naught is of course even, which gives you a contradiction 

because 9 is not an even number at all.  

So this is a simpler solution and this works without having to do all those 12 computations 

that we would have needed to do otherwise. So what is going wrong here, the thing that is 

going wrong here is that there is a common divisor of 2 and 12, which is 2, and this divisor 

should divide 9, the problem is that 2 does not divide 9.  

9 is an odd number, so because 2 does not divide 9 we are not getting a solution, so when we 

are looking at the common divisor of two numbers dividing yet another what we are really 



looking at is the GCD. So we can formulate the condition and prove it, which will guarantee 

exactly when we are going to have a solution to the linear congruence. So that comes in the 

next slide. 
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So here is the Lemma, the linear congruence ax congruent to b mod n, has a solution if and 

only if d which is the GCD of a and n divides b. So once again let me remind you that here 

we have two parts, the part one is if and the part two is only if. So what we would be proving 

is that if d which is the GCD of a, n divides b then we get a solution for the linear 

congruence, this is something that we will prove.  

And we will also prove that if there is a solution then d should divide b. This is the part which 

says only if. So you get a solution only if d divides b. Otherwise you would not get a 

solution. If d does not divide b, then you would not get a solution. If d divides b, then you get 

a solution, so these both the directions need to be proved. So we will begin with the only if 

condition and we will try to prove this.  

So we assume that ax congruent to b mod n has a solution, say k, in the natural numbers. So 

we assume that there is a solution to the congruence ax congruent to b mod n, then what we 

get is that n divides ak minus b or ak minus b is n into alpha for some alpha in z. So we have 

that ak minus b is a multiple of n.  

And we can rearrange these terms to get b to b minus b will be ak minus n alpha, we will put 

be to the n alpha side to make it plus and then, n alpha (com) comes to this to become 



negative. So b is ak minus n alpha. Now, d which is the GCD of a and n divides the LHS and 

hence it should also divide the RHS. That completes our proof.  

We assume that there is a solution say k, then we can write b as nk minus n alpha for some 

alpha coming from integers, and now d being the GCD of a and n, should divide the RHS and 

not the LHS sorry. The right hand side, this is where d divides and then d should divide b. 

This was quite simple, we now go to prove the other side that we assume that d divides b and 

we want to get a solution to ax congruent to b modulo n.   
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So d remember is the GCD of a and n, and we also know that this GCD can be written as a 

alpha and n beta, for some alpha beta coming from integers. Further d divides b, so b is d into 

k and therefore, this is a alpha k, plus n beta k, because d is a alpha plus n beta, we have that 

d into k which is b is a alpha k plus n beta k, which implies that b is a times alpha k modulo 

n, so we got a solution to the congruence.  

Of course, this may not be natural number, if you really want a natural number you can keep 

adding multiples of n, to this and you will get. So alpha k plus a suitable high enough 

multiple of n will give you a natural number and then a into alpha k plus a into that high 

enough multiple of n will be same as d modulo n, and then you will have a solution in the set 

of natural numbers we will see more of this in the next lecture so see you until then, thank 

you. 


