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So, let us just recall we were looking at Pointwise and Uniform Convergence of sequences of 

functions. So, let me just recall that we said that fn is a sequence of functions defined on n. 

We say, fn converges to f pointwise if fn of x, also f is also a function from x to R, converges 

to f of x for every x belonging to the domain.  

And that means, we should not forget what that means; means for every epsilon bigger than 

0, there is a stage n naught which may depend upon, in general it will depend upon epsilon 

and the point x, such that mod of fn x minus f of x is less than epsilon for every n bigger than 

or equal to that natural number n naught, which may depend upon n and x. So, that stage may 

depend upon epsilon of course and also on x.  
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So, then we define what is called fn converges to f uniformly. If, same thing if for every 

epsilon bigger than 0 there is a stage n naught which now will not depend on the point, but it 

will depend only upon epsilon. There is a stage, there is a natural number n naught, such that 

fn x minus f of x is less than epsilon for every n bigger than n naught and for every, so 

probably we should mention that, for every x this happens.  

So, we gave a lot of examples of sequences which converge pointwise, which converge 

uniformly and we had started looking at properties of uniform convergence. We said that, 

pointwise convergence need not preserve various properties, namely if each fn is continuous f 

may not be continuous, each fn is differentiable then f may not be differentiable, and if each 

fn is integrable, f may not be integrable.  
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So, to analyze these properties for uniform convergence functions let us recall, if f is a 

function defined on X to R and f is bounded. We define what is called the infinity norm, that 

is supremum x belonging to X of mod f x. So for, and we observed that this is a norm and 

gives a metric or so I think we called it B X, R on the set of bounded functions with domain 

X and taking values in R. So what is that metric, that metric is d infinity f, g is equal to norm 

of f minus g.  
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So, the relation of uniform convergence with this norm is, let us put that as a theorem. We 

proved it last time, that if fn, if fn X to R are bounded and f X to R is also bounded then fn 



converges to f uniformly, if and only if norm of fn minus f goes to 0. So, we had proved this 

theorem.  
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Let me also point out that here, so let us observe a few things, some observations. One, if fn 

converges to f uniformly and each fn is bounded then f is also bounded. So, if a sequence of 

functions converges uniformly to a some function f, and each fn is bounded, then the function 

f is also bounded. And hence, you can apply earlier criteria because there we assumed f is 

also bounded.  

So, one way, if f is uniformly convergent, each all fn’s are bounded then f is also bounded. 

And hence, you can write and hence norm of fn minus f converges to 0. That is a 

consequence of the earlier theorem.  
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So, let us prove this. So, fn converges to f uniformly. So that means, what does that mean, 

that means for every epsilon bigger than 0, there is a stage n naught which depends only on 

epsilon, such that norm of, absolute value of fn x minus f of x such that for every x belonging 

to X is less than epsilon for every n bigger than n naught. That is the definition of uniform 

convergence. 

So, let us specialize it. So, in particular, it is not necessary but anyway, let us take epsilon 

equal to 1, then for every x belonging to X we have fn x minus f of x will be less than 1 for 

every n bigger than that stage n naught 1. 

That means fn is close to f by distance 1 and fn’s are bounded anyway, so I can just apply 

triangle inequality. Hence, for n greater than n naught epsilon fixed, so fix one, any one of the 



numbers, mod of fx I want to show it is bounded, it is bounded by some scalar for every x, 

then for every x belonging to X. I know f of x is close to fn x, and fn’s are bounded anyway. 

So, I can use the triangle inequality.  

Then for every x belonging to X this is true, this is less than or equal to 1 plus supremum 

over x belonging to X of fn x, that exists. So, you can call this number as M if you like, so 

implies mod fx is less than or equal to 1 plus M, for every x. So hence, f is bounded. So, if a 

bounded sequence of real valued functions converges uniformly then the limit also is a 

bounded function. So, that is 1. 
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Let us look at, second property that we looked at last time, so let us do it again anyway. That 

if, fn converges to f uniformly, f continuous, each fn is continuous at x equal to c, then f is 

also, then f is also continuous at x is equal to c. So, continuity is also preserved under 

uniform convergence. So, let us prove that.  

So to prove this, what we have to do, so we want to make for, we want to analyze the 

distance between f of x and f of c. We want to say that this distance can be made small 

whenever x is close to c, for continuity. And what we know is, fn is converging uniformly to 

f. So close to f, there is a fn, at every point and fn is also continuous.  

So both these facts, so let us note this I can add, so let me write less than or equal to, f of x 

minus fn of x for any n, plus, now fn x minus fn at c, that will be small because of continuity 

of fn, so plus fn of c, and the last is f of c.  

Why I am doing this, I want the left hand side to be small.  But close to f there is a fn, 

because fn is converging uniformly, so I can estimate change f to fn. And fn’s are given to be 

continuous, so I can use continuity for the second term of fn. And finally, once again, close to 

fn there is a f, fn is close. So, all these 3 terms can be made small. So how do I write it, so 

note for every n, for every x this is true.  

So, by uniform continuity, by uniform convergence, by uniform convergence. So, this is how 

you think and now how you write for uniform convergence, given epsilon bigger than 0 

choose the stage n naught such that mod fn x minus f of x is less than epsilon for every n 

bigger than n naught and for every x.  



So, that is by uniform convergence. So now, let us fix some n bigger than n naught, bigger 

than this n naught fix. By continuity of f at, by continuity of f at the point x is equal to c, 

given epsilon as before, that is already fix, there is a delta such that mod of x minus c less 

than delta implies f of x minus f of c, fn so fn of c is less than epsilon.  

So, there is continuity of fn, we are given fn is continuous. So, we have fixed n bigger than n 

naught, already epsilon is fixed, so find the delta size that this happens. Then for every x with 

x minus c less than delta f of x minus f of c will be less than or equal to, so go back, our 

starting point. Let us call that as star, when we said that f is close to fn, fn is continuous so 

that triangle inequality, the first inequality. So, that is what motivated us, so in the star use 

these things, is less than, at least strictly less than 3 epsilon.  

And if you wanted nice thing, then you could have gone back and modified everything, this 

by epsilon by 3, this by epsilon by 3 and this by epsilon by 3 and that could have been 

epsilon, because epsilon is arbitrary. So, you can always make it as small as you want. So, 

that will prove.  

So that proves, basically keep in mind what we want to show, we want to make this thing 

small, and we are given that fn’s are converging to f uniformly and each fn is continuous. So, 

bring in fn’s. So that is, continuity is preserved under uniform convergence.  
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So, let us look at next, something which is also preserved. So, third, fourth, I don't know what 

is it, property number 3. Let us look at integrability. Let, f belong to R a, b, fn’s belong to R 

a, b and greater than equal to 1, or Riemann integrable functions on the interval a, b and fn 



converges to f uniformly. Then f is also Riemann integrable, so then f belongs to R a, b, and 

integral fn d mu, dx converges to integral f dx, a to b.  
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By the way, I think, let me just make a point here that this theorem when we said uniform 

limit of continuous functions is continuous, another way of writing that. So let me put a note; 

fn converges to f uniformly fn continuous implies, see we look at limit fn of x, n going to 

infinity, that is f of x, and as x goes to c that is continuity.  

So, limit x going to c is same as, you can write it as, you can take the limit inside. So, it is 

limit x going to, n going to infinity, let me write n going to, n going to infinity limit x going 

to c of fn of x. So, limit fn will be f of c and f is continuous. 



So this, conclusion of this you can write it as like this. It is like interchanging 2 orders of 

taking limiting operations, limit x going to c, limit n going to infinity is same as limit n going 

to infinity and limit x going to c, interchange of limits operations are possible whenever the 

convergence is uniform. So, that is another way of writing this theorem, so which is useful 

way of observing. There are 2 limit operations, so you can interchange whenever there is 

uniform convergence, that is what it says 
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So, that is something, something coming here also, so I can write this as, so it says a to b limit 

n going to infinity fn dx. What is the right hand side, f is the limit, and the right hand side f is 

the limit, so here, this f is the limit. So, I can write as limit, that is same as, this converges so 

that is limit n going to infinity, integral a to b fn x dx.  

Again, there is interchange of limit and integral here now. Integral of the limit is the limit of 

the integrals. So again, so it essentially says under uniform convergence integration is a 

continuous operation kind of, integration is continuity operation. Whenever there is 

interchange, something implies continuity of something.  
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So, here it is saying that the limit of the integral is the integral of the limit. So, the 2 

operations are interchanged. So, let us prove this, so proof by black. So, we are given fn 

converges to f uniformly. So, this is given and each fn belong to R a, b. We want to show that 

f belongs to R a, b, then only you can write it is integral. And integral fn d mu converges to 

integral f d mu. So that is what is to be shown.  

Now if you want to show that f is Riemann integrable, then you have to first show that it is a 

bounded function, f should be a bounded function.  

But that follows from the fact that just now we have shown. So note, so let us note each fn is 

Riemann integrable, so that implies each fn is bounded. We have shown that every Riemann 

integrable function is also bounded. Implies that f is bounded because fn converges to f 

uniformly. So, all are bounded functions. The only thing that we do not know now is, whether 

f is Riemann integrable or not, f is a bounded function. 

So, let us try to show, we show first f is Riemann integrable. We have got it is bounded, it is 

okay. Boundedness helps us look at upper and lower sums for a function. That way of 

defining integration by way of upper and lower sums is possible, only when f is given to be 

bounded. In the Riemann definition f is not assumed to be bounded. But anyway, we have got 

now boundedness.  

For this what we to show, for this we want to show f is Riemann integrable. That means, for 

this, given epsilon bigger than 0, to find a partition P such that, when is a function integrable, 

when given any epsilon, upper and lower can be brought close to each other. Such that upper 

sum minus the lower sum is less than epsilon. So, this is what we want to show. So given 

epsilon, if we can find a partition P such that upper minus the lower is, difference is small 

then we are done.  

 And keep in mind, how is the upper sum defined, upper sum is, over a partition is by looking 

at the maximum value of the function in any subinterval multiplied by the length of the 

interval, sum it up. 

And what is given to us, given to us is f is, each fn is Riemann integrable and fn’s are 

converging to f uniformly. So, close to f there is a fn, and fn is Riemann integrable. So, the 

idea would be the upper sums of f, we should try to approximate it by upper sums of fn. That 

is the route we should follow. So, let us do that.   



So, by uniform convergence, since fn converges to f uniformly, given epsilon greater than 0, 

there is a stage n naught such that all are bounded. So let us write, mod fn minus f infinity is 

less than epsilon for every n bigger than n naught. Because all fn’s f are bounded, so I can 

now write the supremum less than, for every x and so supremum.  

So that is same as saying, hence for every x, for every n bigger than n naught, let us write 

what is hidden here is that, fn x minus f of x is less than epsilon. That is same as saying that 

supremum and hence this also is less than.  
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Sometimes expanding things help. What we want to do is, we want to relate f with fn, the 

maximum value of f with fn, the minimum value of f with fn. So this gives me, this is same 

as saying, if I look at fx it is less than, expand this inequality absolute value, so this is fn x 

minus epsilon is less than fn x plus epsilon. This is same as saying as this. The distance of fn 

from f is either this side epsilon or that side epsilon. That is same as saying this. Now this 

will give us the required thing.   

So, let us choose the partition. So given, choose, so we have used uniform convergence, now 

we use the integrability. Choose a partition P, so let us call it as a equal to x, 0 less than x less 

than equal to b of a, b such that, so let us, we are not fix, so let us, n bigger than n naught. So, 

let us take n naught itself, such that U P fn naught minus L P fn naught is less than epsilon.  



What I have used, I have used the fact that fn naught is Riemann integrable, because, is 

Riemann integrable. So, there must be, given epsilon there must be a partition such that 

things are close. Now let us, so this is, now that equation let us keep that in mind, so this was 

the equation when fn is close to, so star.  

So, let us use star n equal to n naught, so what we have, f n naught x minus epsilon is less 

than f of x is less than fn naught of x, I am just specialized because this is true for all n bigger 

than n naught. So, let us fix n naught so that we do not have any.  

See this is what we are saying, fn naught x is close to f of x by distance epsilon. So, I can take 

the minimum values, so implies, so let us look at the minimum value mi, let me write fn 

naught what is this mi of f n naught, that is the minimum value of the function f n naught in 

the interval xi minus 1. So if, let me write, it is equal to minimum of fn naught x, x belonging 

to xi minus 1 and xi then what does upper one give me? What will this equation give me? 

This is f n naught x, so it will be bigger than the minimum value. So, mi of f n naught minus 

epsilon will be less than f of x will be less than mi fn naught plus epsilon. This equation, this 

true for all x. So, let us look x in the subinterval xi minus 1 to xi. So, this will be bigger than 

the minimum value, it is less than f n naught x, for every x. So, take the minimum over that. 

So, this equation gives me this.  

 Now from the minimum, value how do you go to the lower sums, by multiplying by the 

length and adding up. So, let us do that, so implies sigma mi of fn naught multiplied by the 

length, so xi minus xi minus 1, i equal to 1 to n. When I multiply epsilon by those lengths, 

those lengths will add up, summation, so it will be just epsilon times b minus a.  

This, this part is this is less than f of x multiplied by the length is less than the corresponding 

thing, so that is mi fn naught xi minus xi minus 1 plus epsilon times b minus a. What 

happened to the sum, here is the sum. So, i equal to 1 to n.  

The previous equation I have multiplied throughout by xi into xi minus 1 and summed up. So, 

the first term is mi, so this first term is, let me just underline it so this thing, if you multiply 

by xi minus 1 to xi minus 1, the length of the interval and sum it up, when you multiply by 

epsilon, that should be giving you epsilon times P minus a. In between, I should put the sum 

also, I forgot to put the sum here, 1 to n, there is sum everywhere. 



So, what does this give me now? Why f of x? No. Actually, I can put here also the minimum 

of f of x. So, let me do that. Anyway this, I should have, I can do that. So, from here when I 

multiply mi less than, I can put here also the minimum of f.  

See from this equation, let me just clarify, this is true for every x. Now in the first part here, 

take the minimum over fn naught. This is for every x, so minimum of the function fn naught 

in the interval xi minus 1 to xi, so that will be less than or equal to f of x for every x anyway.  

And there you can take the minimum of f also. 

So, you can get here minimum, so you will get this part. Take first the minimum over x, you 

get this quantity. This is less than f of x. Take the minimum of fx over that interval. So, that 

gives you the minimum function of fi, mi, so what is that notation I am writing, we are not 

writing that, let me just write, what is that quantity, so that quantity is mi of f.  

So, I am saying I can just write that, is f of x, this quantity is less than f of x, so it will be less 

than equal to minimum also. And that minimum will also be less than or equal to minimum of 

that. So, I can take minimum everywhere in this inequality, that is what I am saying.  

One at a time, but you should do, one at a time to justify that. First take the minimum over 

this part, this is for every x, so minimum only in the left hand side, so you will get this 

quantity. Less than equal to f of x for every x, so take the minimum in that interval, so that is 

mi. This is less than equal to fn naught of x, so take the minimum over that, so as is mi. So, I 

should have, so this f of x I can replace it by mi of f.  

Basically, the idea is fn is close to f by margin of epsilon this side or that side. So, I can take 

the minimum over the interval, this is happening for every x, so I can take the minimums.  

So that means, so what is the meaning of this, this means, this is the lower sum, so lower sum 

of small mi, so lower sum of fn naught with respect to P minus epsilon times b minus a, this 

first part is less than or equal to the lower sum of f with respect to P, f with respect to P and 

the last term this one is less than or, why less than or equal to, is less than actually, it is 

strictly less than. It does not matter actually, is less than L fn naught, it is the minimum over f 

n naught, so fn naught of P plus epsilon times b minus a.  

Basically, what I am saying is this equation, if I take the minimum over all x in the interval xi 

minus 1 to xi, so equation holds for minimum also.  Multiply by the length of the interval and 

add up, that gives you the lower sums minus epsilon times this.  



So similarly, the upper ones. So, that means what, the lower sum of f and the lower sum of 

this is less than, that means mod of L, we are writing fn first, fn naught P minus the lower 

sum f, P is less than epsilon. In the absolute value I can write it this way. This minus b minus 

a, epsilon times b minus a. I am writing that in equality back in terms of absolute value, 

nothing more than that.  

So similarly, you will have upper sum fn naught P minus the lower sum of f, P will be less 

than epsilon times b minus a. Instead of taking minimum, you can take the supremum and the 

same thing. So hence, upper sum P, f minus the lower sum, I want to estimate this quantity, 

for f.  

So that is why, so now add and subtract. So, less than equal or to absolute value triangle 

inequality, upper sum P, f, but that is close to upper sum of Pn, P, fn naught, I should 

interchange, because I am writing P first and then f, so be consistent so that is, so we wanted 

to estimate f... 

Student: Sir the second equation is (())(39:12) 

Professor: This one? 

Student: Yes sir, it is U fn mod comma P minus U (())(39:19) 

Professor: fn naught, no, that is U, sure, sure, thank you. That is upper sum. I said similarly, 

the lower and similarly the upper 

Student: (())(39:32) maximum instead of minimum 

Professor: Where are in that same thing here. Now this quantity is less than or equal to f of x, 

so maximum of that must be less than or equal to f of x, less than or equal to maximum of f x. 

I am saying same inequality gives you both, lower as well as the upper.  
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So, now I want to estimate this quantity. For, so add and subtract, so this is less than or equal 

to upper sum f, P is close to upper sum of fn naught P plus, so I should add upper sum of fn 

naught P minus lower sum of fn naught P plus, the last term now left would be lower sum of 

fn naught P minus lower sum of L P, add and subtract. This technique by now we are very 

familiar.  

So, less than or equal to upper f and fn so this is this equation now. Call it 2, call it 3. Using 2 

and 3, the first one is less than epsilon times b minus a. The last also is less than same. So, 2 

times this, upper minus the lower is less than epsilon. So, that we have already seen, would 

where was that, upper minus the lower, here.  

 So, you can call that as 1 if you like, where fn was, fn naught was integrable. So, upper 

minus lower is small, that is what we started.  

And 2 and 3 are giving corresponding things between fn and f, so, plus, so 1,2 and 3, using 

1,2 and 3 I get this, no problem? So, if you like, this is epsilon times 2 of b minus a plus 1. 

Because epsilon I can always modify, go back and change wherever required, so implies f 

belongs to R ab.  

So, the basic idea is because of uniform convergence fn is close to f for all x, that is important 

thing. So, you can take the minimum over that subinterval, as well take the maximum over 

subinterval and then multiply by the lengths and add up to get the corresponding. 
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Student: (())(42:14) to see that if fn converges uniformly and f does not, f is Riemann integral 

then fn must be Riemann integral. 

Professor: fn’s are given to be Riemann integrable. 

Student: Here fn’s are given to be Riemann integrable, we prove that f is Riemann integrable. 

Professor: But why in general, given that fn is bounded why it should be Riemann integrable?  

Student: I am not saying that if it is bounded, it must be Riemann integrable. I am saying 

that… 

Professor: What are you saying? So, here is the theorem. So what modification you are 

suggesting? 

Student: What I am saying that, fn converges uniformly f are bounded, f are Riemann 

integrable. Small f’s are Riemann integrable. 

Professor: Small fs meaning what? fns or what? 

Student: fns, only fns. 

Professor: If the limit is Riemann integral why you should say all corresponding sequence is 

Riemann integrable? Why should it say that? All fn’s can come to a singleton, all fn’s may 

not be Riemann integrable, but they converge to a constant function. Then the limit is 

Riemann integrable. Why should the function be Riemann integrable, each fn? That is 

expecting too much, giving nothing and you are expecting too much. 

So basic property we are saying is if fns are Riemann integrable, and fn’s converge to f 

uniformly, then f also becomes Riemann integrable and integrals converge. We have not 

proved integrals converge yet. We have only proved f is Riemann integrable.  



(Refer Slide Time: 43:50) 

 

But proving integrability is, so also look at integral of fn d mu minus integral of f d mu. You 

want to show this converges, so you want to show that this quantity goes to 0, we want to 

show that this quantity goes to 0.  

But we know something about, this is less, absolute value of, this is less than or equal to 

integral of f minus fn. Using the property at absolute value of the integral, Riemann integral 

is less than equal to integral of the absolute value and which is less than or equal to, now each 

function fn x is less than equal to norm of, into the length of the interval b minus a.  

The right hand side, because the function f minus fn is bounded by the constant, norm of f 

minus fn. So, I can take it out, less than and this goes to 0, as n goes to infinity. Because of 

uniform convergence norm goes to 0. So, that is not much of a problem.  

Once you know that limit is integrable, convergence of integrals is not a big issue. But the 

important thing is that you need uniform convergence, fn’s converging uniformly to f to say 

that you can interchange limit and the integral sign.  

This is the beginning of a, I have already mentioned I think that the Riemann integral is not 

very well behaved with respect to limiting operations, namely pointwise convergence need 

not imply integrability, limit of integrals is equal to limit of integrals.  

So, that started the research for looking for a integral which has better properties compared to 

this. So, that is the another point for the beginning of what is called Lebesgue integration, 



whether this is much better behaved. You do not need uniform convergence, you need a 

slightly milder conditions to be true.  

So this is, now the question comes, see what we are doing today is very important in 

mathematics to relate ideas. Continuity is an idea about how fn x, f x converges to something, 

f of x, as x goes to c. And if you take limiting operations, we know algebra of limits. If f plus 

g are continuous then f, f and g are continuous then f plus g is continuous, product is 

continuous.  

So, it says if you go on taking limits, so, see this is a very general thing one consider. You are 

looking at the class of functions, real valued functions, say R to R. What are the properties 

you would like to analyze, you would like to analyze, you can add functions, so you like to 

know under addition what is preserved. 

I can multiply, under multiplication what is preserved, I can scalar multiply, given a function 

f I can multiply by c times f, what properties are preserved under that? Because, on R these 

are the structures available, addition, scalar multiplication, product, you can take limits.  

Under all these what are the properties which are preserved? So, what we have shown is 

when we did continuity, differentiability and so on, if f is continuous, g is continuous, f plus g 

is continuous. Differentiability we saw that, f plus g is differentiable if f and g are 

differentiable, product was differentiable. 

If fn’s are differentiable, can you say the limit is differentiable, that we saw it is not 

necessarily true under pointwise. So that is why, there is a need to put some stronger 

conditions which allow us to pass over limit and that operation, interchange those 2 

operations, uniform convergence is one.  

Unfortunately, differentiability does not even, is not preserved under uniform convergence. 

One has to put slightly more stronger conditions. So, we will not prove that theorem. Let me 

just show you that theorem, so that you understand.  
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So, this is integrability fn converges to f uniformly, then f is integrable. And, so here is the, it 

says suppose not only fn is converging uniformly, fn dash each function is differentiable and 

the derivatives also converge uniformly, you need something more. Also suppose that, it 

converges at some point then fn converges uniformly to a differentiable function and 

derivative.  

So, it is slightly more convoluted kind of a thing. You have to put conditions on the 

derivative itself to ensure that the limit function is differentiable. So, we will not go into that 

because it is not a very useful result, in many situations. It just, simply does not say fn’s are 

differentiable, converging uniformly then limit is differentiable. So, we will not do that.  



So, let me just summarize what we have done till now. We had looked at sequences of 

functions, and tried to analyze what are the limits of, under what is the meaning of pointwise 

convergence at every point it converges. And we observe that, at pointwise convergence is 

not very good behaved, they are not very well behaved.  

It does not have any one of the properties that we can think of, continuity, differentiability 

and so on. So for that, one looks at what is called uniform convergence and it preserves 

continuity, it preserves integrability, it preserves boundedness but in some way it preserves 

differentiability, not exactly straightforward way.  

So, next time what we want to do is, I will stop here today; there is a reason for that.  But 

what we want to do is, start with sequences and see what is other use of sequences. For 

example, the algebraic operation of addition of numbers, given 2 numbers you can add them, 

a plus b.  

Given 3 numbers a1, a2, a3 you can add a1 plus a2, any finite number of real numbers you 

can add them, because there is operation of addition, and inductively given any n, you can 

add them. Can you add infinite number of numbers? That is a question.  

How does one find a way of adding, so what does it mean, given a sequence a1, a2, a3 and so 

on. How do I say something like a1 plus a2 plus a3 plus dot, dot, dot? It makes sense or not. 

In what way I can give a sense to that operation, infinite addition of numbers. And that, very 

natural way of doing that, that is how do you add? a1 you add a2, so a1 plus a2, you have got 

another one, add a3. So up to an.   

So, you can go on doing it but what eventually you want is when you go on adding a1 plus, 

plus an, whether they become stabilized somewhere. So, that is limit of a1 plus a2 plus an, 

you will like to consider. So, that gives you a notion of what is called series of numbers. So, 

we will do it next time. So, we will stop here today. 


