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Lecture 9
Algebraically closed fields and statement of FTA 

In the last lecture we have studied we have been studying polynomials over a field and in the

last I have stated very important theorem which says that the field of complex numbers is

algebraically closed.
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So let us recall quickly what we did from the last time and continue from there. So we have

defined  the  definition,  a  field  K  is  called  algebraically  closed  if  every  non-constant

polynomial F with coefficients in K has a zero in K, then we say the field is algebraically

closed. In the notation that is our notation V K (F)  this is the set of zeros of F in K this is

non-empty, so that means there is atleast  one zero of F in K or equivalently equivalently

every  non-constant  polynomial  F in  K splits  into  linear  factors  in  K[X],  so again  in  the

notation  that  is  F  will  look  like  some  constant  a(X – x1)
α1 ...(X – xr)

αr  with  this  a  is

constant non-zero constant and x1  to xr  are elements of K they are distinct and (with)

their multiplicities are α1  to αr  these are non-zero natural numbers. So in this case we

actually know therefore what is V (F) .
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So therefore V K (F)  actually we know it is a set x1  to xr , when you write in the set

notation we do not write the multiplicities so this x1  is occurring α1  times in F, x2

is occurring α2  times in F and so on, xr  is appearing αr  times in the linear factor

the multiplicity of xr  also this finding out the multiplicities is also a task but that is not so

difficult like a factorization, so that when time comes I will indicate some methods to do so.

Another way of thinking is equivalently every prime polynomial in K[X] is linear that all

these conditions are equivalent is very easy to see and after this we should see some examples

of algebraically closed fields as well as algebraically non-closed fields. So therefore it is very

important after every definition to give examples of that kind and not of that kind. So some

examples, so the first one of course is what I stated it as a theorem this is a theorem of which

we will proof theorem of Gauss D'Alembert, Gauss was German and D'Alembert was French

and the theorem says that the field of complex numbers numbers which we denote by this

setC with the double line is algebraically closed I will just mention here, proof later little bit

history about the theorem. 
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So we have field which is algebraically closed ℂ , I want to give little history and not more

it is very interesting. So first of all formally stated stated by D'Alembert 1746 before that the

mathematicians were they did not find a need to proof this, they somehow calculating and

they were  convinced that  the  zeros  of  a  polynomial  equation  with real  coefficients  have

complex zeros.

But how did the D'Alembert formulate it because he was actually he formulated this because

he wanted to solve differential equations and to solve the differential equations if you know

that specially for the partial fractions partial fractions occur there and to do that you need a

denominator  polynomial  should  split  into  linear  factors  and  then  you there  are  standard

techniques  to integrate  the partial  fractions and that  is what he wanted to do and in that

connection he stated this formally and also offered a proof with proof and what was his proof

I will just state it he had two steps in the proof.

Number  1  the  first  step  in  the  proof  was  as  I  said in  the  last  lecture  also  you think  of

polynomials  as  polynomial  functions.  So  we  want  to  proof  that  if  F  is  a  non-constant

polynomial in  ℂ[X ] , F non-constant then we want to proof that F has a complex 0. So

think of F as a function from ℂ  to ℂ , any z going to F(z )  and we want to proof

that (it has a complex) F has a complex 0 means.

So to prove for some z F(z )  become 0, F(z )  is 0 for some z in complex number, but

this is equivalent to proving 0 in the image of this function F, image of F is by definition take

Cos z and take their images in this is F of ℂ , so this is what we want to prove, 0 belong to



the image, then there will be some z which will go to 0 that means what we prove it. So for

this he claims two things number 1 he claims (this is not 1) number 1 he claims that F is

closed map, here I will use little bit terminology what one learns in a very first course on

analysis, so close map means this ℂ  has metric space, ℂ  has a metric on that and we

talk about open subsets, closed subsets, etc with respect to that metric.

So closed map means F maps closed set to the closed sets, F maps F of any closed set G is

closed is closed for every closed subset G of ℂ  that means F is a closed map.
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And the second claim he makes that second claim he makes that it is F is an open map that

means F map closed sets to the closed sets and because of our assumption F is a non-constant

polynomial. Since F is non-constant the map F from ℂ  to ℂ  is also non-constant. So

we have a map from ℂ  to ℂ  which is open map and which is also closed map and we

learn again in the first course of analysis that if you have a map like this so that means F of

ℂ  this is because ℂ  is closed in setC this is closed and ℂ  is also open in ℂ , so

this is open and because it is non-constant map this is non-empty.

So we have a non-empty subset which is both closed and open and then one learns in a game

in first course in analysis that then F of ℂ  must be ℂ , this is I would just say analysis.

In particular 0 belongs to F of  ℂ  which is what we wanted to proof. Now you see this

proof is very good, the first part closed map also can be proved very easily for doing that one

needs to use what is known as Heine–Borel theorem which I am not going to elaborate on

this because we are going to prove it in a different way.



And this prove was not accepted by mathematicians at that time because that F is open map

D'Alembert in state in this format I am stating this format in the modern language but that

time this theorem which says that if you have analytic function then it is an open map this

was non-constant  analytic  maps are open maps this  was not yet  proved, this  was finally

proved by Gauss later, so this proof was not accepted that time and this proof was considered

gaps.

So later on the first person to give correct proof was Gauss first correct proof that was I think

1801 and there that happened because only after that only after he proved open mapping

theorem, maximum modulus theorem and all those things Liouville's theorem and only then it

became more and more clear till then this was not very clear. Also little word about this any

proof will involve some analysis that is unavoidable but one can try to minimize the use of

analysis, so this is what I will do it in when I give a formal proof of this theorem that is

because if you see definition of (complex numbers is) complex numbers are constructed from

real numbers, real numbers are constructed from the rational numbers and this here this gap is

big here this construction of real numbers from rational numbers is only by limit which is a

concept in analysis, here it is not too bad, here it is an algebra construction, before that also

an algebra construction. 

But definition itself of ℂ  or ℝ  involve some kind of analysis, so that one cannot avoid

to give any proof of fundamental theorem of algebra and I will give a proof which is due to

Lagrange after may be 2 lectures, but before that now I want to still discuss examples of

continue discussing examples of algebraically closed or non-algebraically closed.
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So far we have one example of algebraically closed field, the fields ℚ  and ℝ  are not

algebraically  closed,  simply  because  you  look  at  the  polynomial  X2
+1 ,  this  is  a

polynomial  with rational  coefficients and therefore we can think also polynomials in real

coefficients and there is no 0,  ℚ  of this polynomial is empty set, also real zeros of this

polynomial there is nobody therefore it is an empty set, therefore this polynomial is non-

constant in fact degree 2 and has no real or rational zeros, so these fields are not algebraically

closed. 

So another set of examples  ℤp , where p is a prime number or for that matter any finite

field F I have not shown you that such fields exist but we will also show in due course later

that how to construct more finite fields by using ℤp , ℤp  is very easy to construct just

from the  congruence  modulo  p.  So  these  fields  are  not  algebraically  closed.  So  simply

because now I have to produce you a polynomial which is a prime polynomial and which is

not  linear,  if  I  do  that  then  it  will  not  be  algebraically  closed  field,  but  this  also  I  will

postpone  it  little  bit  because  anyway  I  am  going  to  discuss  some  properties  of  the

polynomials and from there it will become more and more clearer that these fields are not

algebraically closed. 

Only I have mentioned last time that the number of prime polynomials with coefficients in

ℤp  are infinitely many, but we did not say anything about the degree. Actually that also

shows that because if you have noted note that we have proved earlier there are infinitely

many prime polynomials in ℤp [X ]  we have noted this infinitely many that is same proof



as  Euclid's  theorem  on  infiniteness  of  the  prime  numbers,  but  then  how  many  linear

polynomials  are  there?  They  are  only  finitely  many  linear  polynomials  because  linear

polynomials looks like a X+b  and prime therefore I could have even said monic.

So the linear polynomials  are this, so how many polynomials  are there? As many as the

coefficients b but b can vary only in a finite field, so therefore they are finitely many, so there

must be a prime polynomial which is of degree more than 1 and therefore finite fields are not

algebraically closed. 

So now in formal days like Galois and even his predecessors they were more concerned about

the rational polynomials and they were not concerned about over finite fields, finite fields in

fact was not clear that time. So I want to draw some consequences of fundamental theorem of

algebra that  is  ℂ  is algebraically  closed from this I want to draw some consequences

about rational polynomials and real polynomials. 
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So the first I want to write that as a corollary, this corollary to the fundamental theorem of

algebra. So the monic I want to describe all the monic polynomials in ℝ[X ] , the monic

prime polynomials, I do not have to say because we have made that can mention monic prime

polynomials in ℝ[X ]  are precisely they are linear ones so they are like this X−c , as

setC varies in ℝ  they are infinitely many or and X2
+ p X+q  with p, q real numbers and

p2
−4q  is negative.



Note  that  in  the  school  days  you  might  have  realized  that  this  number  becomes  very

important that is called the discriminant of this polynomial, so I will just say discriminant of

X2
+ p X+q .  In particular  if I  prove this then what would have noted in particular  the

prime factorization of arbitrary polynomial F in ℝ[X ] , where F is non-zero contains only

linear  and  quadratic  polynomials  with  this  condition,  contains  only  linear  and  quadratic

factors  with  negative  discriminants.  So  that  is  already  good  information  about  real

polynomials. 
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Okay, so now let us spent few sentences for the proof of this corollary. So proof, so we are

given  a  non-zero  real  polynomial  and  we  want  to  factorize  we  want  to  find  a  prime

factorization and last  time (I) for arbitrary field we have noted that  if  I have a non-zero

polynomial  then  you  take  out  the  real  zeros  and  they  will  corresponds  to  the  linear

polynomials and the remaining part is the prime polynomials of higher degree and there I

want to show now that higher degree parts are irreducible.

So that means I only have to show that if F is a polynomial non-zero polynomial of degree

bigger equal to 3, then F is reducible, so it cannot be prime then so till the degree drops down

to less equal to 2 and then we will worry about the discriminant condition. So I have to show

this  if  I  have  polynomial  of  degree  bigger  equal  to  3,  then  it  is  reducible  that  means  it

factorizes into ℝ[X ] .

So I will divide the proof in two parts one the degree is odd and the degree is even, odd

degree polynomial if you try to draw graph of that (function) polynomial function then the



odd  degree  polynomial  we  know  that  the  degree  is  odd  therefore  it  will  look  like

X2n+1
+lower degree terms , I could have also assumed it is monic because we only want to,

so I could also assume monic.

So (the) when the X becomes very large this is positive and when it becomes very negative

large then it will go down to the so it will the graph will look (like) something like this. So

that means on the large side large positive side the values of this polynomial is positive and

large negative side value is negative because the sign of the value is determined by that top

degree term and when X is negative this is odd, therefore it is negative, this is positive. 

So that means an F is a continuous function polynomial functions are continuous, therefore it

has to cross the real axis somewhere and atleast once, therefore wherever it crosses those are

the real zeros but it is atleast 1. So that shows that in fact odd degree polynomial has a linear

factor. So F has linear factor, in particular it is not irreducible, in particular that is reducible.
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Now the even degree term if it is even degree then note that because it has real coefficients,

coefficients of F are real. So if and we know by fundamental theorem of by FTA fundamental

theorem of algebra this polynomial F is in ℝ[X ] , therefore it is contained in ℂ[X ]  and

therefore by fundamental theorem of algebra there exist z in complex numbers, such that

F(z )  is 0, but if  F(z )  is 0 then  F(z )  is also 0, but then what is  F(z )  that is

because F has a real coefficients, this is nothing but F(z )  because when you take the bar

of the polynomial that will go down to the bars of the coefficients and bars of the powers of z,

that powers of z  will be powers of bar of the powers of z will be powers of . z



So then this equality is clear, so that means if F(z )  is 0, then F(z )  is also 0. So that

means they appear in pair so and if z were a real number we are happy because then X−z

is a factor and we know we get what we want, if z is not real then z  is also not real and

therefore these two linear  factors  of  X−z  and  X−z  bar they are linear  factors  in

ℂ[X ]  and they are different because z and z  are different. So therefore the product will

also divide F, so then (X−z)(X−z)  this divides F in  ℂ[X ] , but actually this is real

polynomial, we just have to write down the formula for that.
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So note that  X−z  and  X−z  bar when you expand it, it is  X2
−(z+z)X+z z , but

this is same as this is the real part. So this is same as X2
−2 ℜ(z)+|z|2 , so this actually has

real coefficients. So therefore this is a factor of F in ℝ[X ] , so that means F is not that is F

is therefore reducible. So that is slightly one error which I would like to correct it, so for

example when I said look at the product (X−z)(X−z)  this product is (this line is okay)

here it is 2 times real part of z and 2 times real part is also real number and this is also real

number, both these are real numbers.

So therefore this is a factor of F in ℝ[X ] , so that means the polynomial F is reducible and

that is what we wanted to conclude in the last part. So that proves that our claim that if you

have a degree more than 3, then the real polynomial cannot be prime polynomial, okay we

will continue after so what we are doing is we are assuming that the assertion that the field of

complex numbers is algebraically closed and we want to draw some consequences about the



polynomials and their zeros of in a field of rational or real numbers, I will continue this after

the break also, thank you.


