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So in the last lecture we have seen for each polynomial we have attached a Galois group and

we are studying zeros of this given polynomial in terms of the action of the Galois group on

the zeros of that polynomial. So let me go on this furthermore and give little bit of more

information more intimate statements.
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So I will assume now f is a monic polynomial which is product of finite remaining prime

polynomials distinct so and each… This is a polynomial in K [X ] , K is a base field and

π1 ,…,πr  are distinct prime factors in K [X ]  and they are all separable. So that means

they do not have repeated zero so therefore f is also separable , then we have attached a field

to  this  that  is  L  which  is  a  splitting  the  field  of  f,  so  given  all  the  roots  we call  them

x1,…, xn , this is a splitting field of f over K and then therefore we have this extension L

over K which is a Galois extension because it is normal and separable and therefore there is a

Galois  group  Gal(L∣K )  and  this  is  how  we  have  defined  it  to  be  Galois  group  of

polynomial f over K.
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And we are studying operation of this Galois group on the roots right and the last time we

will  see, so operation of  GalK( f )  on  V ( f )  which is  x1 ,… , xn  and therefore the

action of morphism is a group morphism from GalK( f )  to the symmetric group on this

x1,…, xn  and this map this is a group morphism and this is Injective. Injective simply

because each element σ  here is uniquely determined by the tuple σ( x1) ,…,σ (xn) . If

you know the values of σ  on x1,…, xn  then σ  is determined that simply means this

map is injective therefore one realizes this Galois group of f as a subgroup of Sn .

But this homomorphism this one depends on the numbering we have chosen x1,…, xn . If

somebody  else  chooses  the  different  numbering  then  this  group  will  be  corresponding

conjugate subgroups because different numbering will give you permutation and that will be

conjugation by that permutation the image will be differ by that conjugation.
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So  and  last  time  also  last  lecture  we  had  proved  that  the  orbits  are  precisely

V (π1) ,…,V (πr) ,  these are  the orbits.  So the roots of  π1  will  be permuted among

itself, π2  will be permuted among itself and so on, so they will not mingle with each other

because that is how the algebraic structure of f is preserved under the operation. So I want to

write  down the  corollary  one  more  corollary  under  the  above  notation  more  more  final

statement that is Galois group of f over K to now, the earlier it was in the group Sn , but

now I am taking permutations on the roots of π1  cross cross permutations of the roots on

π r  and then σ  goes to this.

So σ  will permute these guys so σ  is giving you permutations here, so that is so I did

not number it so it is clear that this σ  gives a permutation by σ  of if you call the roots

of  π1  to be  x11 ,  σ x1μ1 , so there are  ν1  roots for  π1  this is this tuple this

permutation and so on. So you get here r elements, so note that this group is not isomorphic

to this group is contained in S (x1,…, x i) , this also has the same letters but this group is

say for example, you take S4  and you can take this so S4  may not be right example so

what I am saying is if you take S2×S2  so this one has cardinality so this is also these 2

letters these 2 letters, this is also contained here but not equal.

This one permutes only the 2 fixed letters, this one permutes 2 fixed letters so this is abelian

for example this is not abelian and so on. So therefore this is better finer information than that

and here also the comment  again  the same that  this  is  a group homomorphism and it  is



Injective. Injective for the same reason because σ  is uniquely determine the values on all

these  guys  therefore  it  is  Injective  group  morphism.  So  for  example,  if  you  know it  is

S2×S2  then it is abelian, before I do I need one more observation that, let me write that

observation.
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So this is a proposition and now I will assume K is a field and I will assume characteristic K

is not 2, and f is a polynomial which is monic and it splits into these prime factors and each

π1 ,…,πr  separable prime polynomials in K [X ] . This then I want to know, so we have

seen above that this Galois group, we know this is a subgroup of  Sn  subgroup of the

symmetric group n, where n is the number of roots, n is cardinality of the roots of f in the

algebraic closure and that we write this set as x1,…, xn , they are distinct roots as many as

the degree of f,  degree of f is n okay. Okay so now I want to know when is this group

contained in the alternative group, so I want to know this.

So this is always so then this Galois group is a subgroup of alternating group A n if and only

if the discriminant D i s c, now I write this notation discriminant of f, we have seen the

discriminant is a constant like in a quadratic case it was b2 – 4c  so this is in K that was we

have approved this but this is contained in n if and only if discriminant is a square in K, just

not in K but square in K means what, so that means this discriminant of f is some a square for

some a in K, this is what the statement is. So so let me first give a small example to why it is

useful so for example this is a very small example, this should be done in the school you do it

in the school.
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So example, we take a degree 2 polynomial f, f is X2
+b X+c  this is the polynomial and in

this case we know what is the discriminant of f, discriminant of f is  b2 – 4c  okay. And

suppose this is a square, so if the discriminant of C, discriminant of f if this is a square, if this

is a square in K what do that mean? Then that means  b2 – 4c  this is some a square for

some a in K that means I know the roots then and therefore the square root of when I write

b2 – 4c  + – , this is same thing as + – a.

So that means this polynomial actually splits in two linear factors X + a and X – a combined

where are the factors? They are in K [X ]  because this is a in K therefore the factors are

linear  so that  means the original  polynomial  we started with,  it  actually  splits  in K only

therefore what is the splitting field, this is nothing but K only because the polynomial already

splits in K then what is the Galois group, Gal f over K this is nothing but it is a group and

what is the extension? The trivial extension so the Galois group is trivial only identity, so this

is  very  easy.  Converse is  also correct,  conversely  also same steps  so therefore  quadratic

polynomial can have, so what are the possibilities for Galois group lets write it down.
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So we have proved Galois group over K of a quadratic polynomial,  degree f is 2 monic,

monic you can always assume and more importantly characteristic of K is not 2 then there are

2  possibilities  and  we  will  write  down exactly  when  is  which,  this  is  identity  trivial  if

discriminant of f is a square so that means it belongs to K 2. Remember K 2 is all square, this

is a all those a square such that a is in K all squares that is then it is identity otherwise it will

have what will be the splitting field? If it is not a square then it is contained in An  that our

proposition I stated but that means in that case it will be S2 .

I  have only 2 possibilities,  if discriminant  is not in K not a square so it is not in  A2

therefore it has to be S2  but if it is not A2  is a trivial this thing, this is a trivial this is

the group A2  so it is, so one can do such things such analysis for degree 3, degree 4, etc,

but then all that you need to compute the discriminants so then it becomes a computational

that becomes precisely theory of equations alright, so let me prove the theorem I stated first

so discriminant so I want to prove this.
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Galois group is contained in A n, we know it is always contained in S n in our setup, this is

contained in A if and only if discriminant is a square in K, in K is very important alright so

proof of the theorem.
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Proof; so let me recall little bit about discriminant, so recall that so a polynomial f beside

degree  n  and  it  is  monic,  so  Xn+ lower  degree  terms  +  a0  and  then  what  is  the

discriminant? So then you find a bigger field L so you will go to the splitting field L of f and

then you write f as  (X – x1) ...(X – xn)  and this is in  L[X ] , this L is a spitting field

K [ x1 ,…, xn]  and this  x1,…, xn  are the zeros of f, they are all zeros and they are all



distinct. Then what is the discriminant? If you remember, discriminant of f is nothing but you

take the Vandermonde of x1,…, xn  and square of that.

Now remember that this square this Vandermonde is not in K, apriori this is in L so this is in

2L , this is a square in  2L , this is always this is what discriminant is. We have also

proved that this actually belongs to K then you have proved and how did we prove that? We

proved that this by using the following, if I have σ  an element in the Galois group then

σ(V )  let me just simply write this as V, this is nothing but sign of σ(V ) . 

So  this  Vandermonde  when I  apply  permutation  what  comes  out  is  the  signature  of  the

permutation, so when will this Vandermonde be invariant? So V 2  is the first of all note

that because of this  σ(V 2
)=V 2 , so that means  V 2  is indeed in the fix field then fix

field is K because it is a Galois extension, this is a fixed field of under the Galois group

which is K because the field extension is Galois. So V square is definitely fixed so V 2  is

an element in K that proves this discriminant is indeed an element in K but by definition it

was square in L but now the problem is when it is square below alright.
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So this shows that and when did we use characteristic? So here we have used the fact that the

characteristic is not 2 otherwise you know sign of σ  is either 1 or – 1 and – V will become

V so there will be a trouble, so characteristic is not 2 and V is nonzero. V is nonzero we have

used because these roots are distinct so that is where we have used distinct and characteristic

is not 2.
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So therefore we show that the Galois group of f over K, this is contained in An  if and only

if  V is  fixed  under  every  element  of  Galois  group,  but  that  means  so  that  implies  this

discriminant of f which is V 2 , so it is V 2  and V is in this is K, V is in L therefore this is

in K2 . Conversely if it is in K2 , V and discriminant whichever square it is that and V

will differ by only + – and therefore if and only if this is if and only if. So we have proved the

statement and if you want to check about the weather G Galois group is contained in the

alternating group, we have to compute the discriminant and we have to check it is square or

not square and that we have seen in the quadratic case.

(Refer Slide Time: 20:55) 



Now let us do little bit more so for example, some couple of examples so that you will know

what is needed to be calculated. So first of all some examples at least, so one I look at the

polynomial f which is X4
+ p X+ p  and is a prime number, p prime let us assume that p is

bigger equal to 7 okay. And now observe, first thing you observe that f is irreducible over

ℚ  and this is Eisenstein’s criteria, use that because I will apply it to this is prime, monic

both these coefficients are divisible  by p and the constant  term is  not divisible  by  p2

therefore this is irreducible over ℚ  alright.

Second thing you know to compute is to compute the discriminant, now how do we compute

the discriminant? This is 4 so discriminant is some determinant know it is a Vandermonde, of

course we cannot hope to calculate discriminant by using the Vandermonde because if you

want to use Vandermonde and square it then you have to know what are the roots so you have

to have different techniques to compute the discriminants. So computation can be done as

follows; so that I want to explain how do we want to do computation that I will explain soon

or  maybe  in  the  next  half  and  I  will  write  down the  answer  here  the  discriminant  one

computes is – p3
+99 p –64  so the discriminant is therefore negative so it cannot be square

and our base field is Q.
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Therefore  what  do  we  infer?  We  infer  the  Galois  group  over  ℚ  of  this  polynomial

X4
+ p X+ p ,  this  is  not  containing  A4  because  if  it  is  contained  in  A4  the

discriminant will be a square but it is a negative therefore it is not containing the square. And

from here you conclude the Galois group over ℚ  X4
+ p X+ p , this has to be S4 , so



we have computed from here to here to do the calculation. Calculation means what? This is

not contained in  A4  so it has odd permutation and so on, and so standard finite group

theory you can conclude it  is a transitive group because we know the polynomial is zero

decimal so this group is a transitive subgroup of S4  and therefore you conclude from that

the group has to be S4  only, so this one.

So 2nd example,  you take the polynomial  X4
+X+b  and b is  an integer  and I want to

calculate the Galois group over ℚ . So again you write to compute the discriminant of f,

this is 256b3 –27 , which is what? Which is now it will depend on b, if b is negative it is

definitely, so if b is negative, it is definitely negative with b positive and big then big means it

is compared to this. So therefore what answer you will get? You will get answer either S4

or A4 , and this A4  will occur only for finitely many b. So this b only for finitely many

b it will be A4 , otherwise it is S4  because if b is negative first of all, this is negative

and therefore it cannot be square therefore it is here, therefore it is here and so on.

So in all these examples the most important thing now is a computation of a discriminant that

is what is very important. And in the next lecture I will indicate how do you compute the

discriminant and it is not so difficult, but one has to use the linear more effectively that is one

thing.
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Another thing is I want to mention here is, I will make a definition here, so a Galois extension

L over K finite Galois extension L over K is called abelian if the Galois group is abelian so



and I keep calling Galois abelian extension. If I write L over K abelian that means it is a

Galois  extension + the Galois group is  abelian  so this  adjective your here which we are

attaching that is too coming from the group. So for example, if I say Galois group is non-

abelian, so non-abelian extension I say that means it is a Galois extension and the Galois

group is non-abelian.

If I say solvable extension that means the Galois group is solvable and so on. If I says I cyclic

then the Galois group is cyclic and one can write down the characterization so I wanted to

write a theorem also so L over K Galois extension, then L over K is cyclic if and only if, this

I will do it in the next next lecture and also we will know how to compute the discriminant

thank you, we will continue after the break.


