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Lecture 6
Division with remainder and prime factorization 

Let us continue our study of polynomials over a field and one of the most important thing

which I will state now is about the division. So we already study such property of integers in

the school, so I will not recall what is called division.
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What I am trying to call now is division with remainder. So we have two polynomials F and

G with coefficients in the field K and let us assume G is a non-zero polynomial, I want to

remind you again that we have not defined degree of zero polynomial, so degree of a zero

polynomial is not defined. Now we are given two polynomials and G is non-zero polynomial

then I want to divide F by G and look at the quotient and remainder.

So then the assertion is there exist unique polynomials Q and R coefficients in K again such

that F=QG+R  with either R is 0 or degree of R is strictly less than degree of G and once

we prove this uniqueness, (we will take) because of uniqueness, Q is called quotient and R is

called remainder of F by division with G, we will proof this statement but before we prove I

just want to remind you this is what we studied in school. If you remember given two integers

or, studied with a natural number, given two natural numbers one of them non-zero then we

could divide the other natural number by a non-zero natural number to get a quotient and

remainder and the remainder the role of the degree is played by the modulus.



So the magnitude of the natural number, so either the remainder should be less than that the

dividend or it is 0 and this is a similar thing what we want to prove it instead of integers we

want to prove it for the polynomials and you will see the proof is very easy.
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So  let  me  indicate  the  proof.  So  we  are  given  F  and  G,  so  let  us  first  write  G,  G  is

b0+...+bm Xm , m is the degree of G which is this bm  is non-zero therefore and this is G

non-zero polynomial, so degree is bigger equal to 0 and define bigger equal to 0 and F is

a0+...+an X
n , where an  is non-zero and n is the degree of F (when F is) I can write this

only when F is non-zero remember that otherwise I have no information if F is 0 and we are

looking for Q and R.

So I am going to prove the assertion by induction on the degree of G, I cannot say induction

on the degree of F, degree of F may not be defined when F is 0, so induction on the degree G.

So induction will starting the beginning of induction should be at. So let us look at degree of

F. So before I have started with this if F is 0 then there is nothing to proof because if F is 0

you take Q equal to 0 and R equal to G, now (R equal to) Q is 0 and R is also 0 because let us

write the equation what we want to satisfy (Q) F should be equal to QG plus R, so if this was

0. So obviously this equation is satisfied Q and there is no condition on Q and there is a

condition on R that is R is either 0 or the degree of R is strictly less than degree of G that is

also satisfied. 

So if F equal to 0 then there is nothing to prove it is very easy. So we may assume F is non-

zero and now we will prove our assertion by induction on the degree of F, so this sentence I



should have said it here so by induction on degree of F so F is now like this and what do I

want? I assume now the statement for the smaller degree polynomial than F and then prove it

for degree F, so that means I want to reduce the degree of F by using the polynomial G, so

what do I do?

(Take) so I want to cancel this coefficient and fortunately over a field, so what do you do?

You make multiply G by bm
−1  which exists because K is a field and bm  is a non-zero

element of the field so this exist and then I want to cancel this n, so I will multiply this by

Xn−m  look at this polynomial G, first of all I also I have again forgot to make a comment

that if n the degree of F is n if degree of F is smaller than degree of G so I will write in the

side if degree of F is smaller than degree of G then again I will take Q equal to 0 and R equal

to F then also this equation is satisfied, so therefore without loss I would have assume F is

non-zero and degree of F is strictly bigger than degree of G should assume that.

So now we are trying to cancel the top degree coefficient of F, so what do I do? I consider

this you remember what did I do with this, now G as leading coefficient b m and I multiply

by bm
−1  this become 1 and I multiply by this Xn−m , now that is allowed because we are

assuming we are assuming this is n and this is m, so we are assuming n strictly bigger than m,

so this is (some positive) some natural number so this what is the leading coefficient of this is

precisely Xn  because the leading coefficient got cancelled and then this power became X

power m, so leading coefficient is 1 here and you can multiply by an  now minus  an

and then subtract this quantity from F what do I get?

Let us look from the top degree that is this is an X
n  I want to compute the coefficient of

Xn  plus  lower  degree  term so  from here  it  is  coming  an ,  from here  it  is  coming

anbm
−1  and bm  so that is anbm

−1  bm  but then this is 0 so therefore the degree of this

quantity.
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So let me write the result the degree of this polynomial  F−anbm
−1X n−mG  this degree of

this new polynomial strictly smaller than (degree of G) degree of F. Therefore by induction

hypothesis I can apply the induction hypothesis to this polynomial this degree smaller so by

induction hypothesis there exist Q’   and R’  two polynomials with either R’  is 0 or

degree  of  R’  is  strictly  smaller  than  degree  of  G  such  that  this  polynomial

F−anbm
−1X n−mG  this is equal to Q’G+R’  this is induction hypothesis. 

Now I simply what do I do? I simply shift this term to the other side, so that will imply so

therefore  F  will  be  equal  to  shift  this  to  the  other  side  and  take  G  common.  So

Q’
+anbm

−1 Xn−mG+R ’ , so this is my Q the one I am looking for and this is my R and so this

condition remains same and on Q there is no condition, so we have found a polynomial Q and

polynomial R with the required conditions. So this is division algorithm this is very very

important you will see in a minute that I want to check now. 
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For example our problem let me remind you our problem was what? Our problem was given

a polynomial so given a polynomial F with coefficients in a field, we are looking for the

solutions, so solutions of F in K let us say. So solutions of F(x )=0  with x∈K  this is

what  we are  looking.  So that  means  we want  to  decide  how do you check for  a  given

polynomial so given F and given an element a in K, how do you check that this a is a solution

of F? That means how do we check how do we check F of a is 0 or not?

So that is we will use now we will use now a division algorithm, (how do you) division with

remainder so that is so let us write in the form of corollary. So we are going to apply to this

given F, so F is a polynomial in K[X], a is a given element in K, then F of a is 0 if and only if

the linear polynomial X minus a divides F, but again when you say divides F we should better

write in K[X]. So let us proof this, this is very easy (I wrote it on this page is pe likh diya

maine)
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Okay, so let us continue with the proof, so we have now given F and also we have given this

linear polynomial and this is my G now I am going to apply division with remainder by

dividing by F by dividing by G then what do we get? There exist Q and R in the polynomials

again with either R is 0 or degree of R is strictly smaller than degree of G, but degree of G is

1, so this R has to have the only possibility is R is the constant polynomial or R is 0, so this

whole  thing  means  R is  constant  that  means  R is  an  element  in  K x  actually  strictly

speaking so that is information.

So we have written F as  Q(X−a)+R , but now I want to find what is R? Now in this

equation this is equation about polynomial and I am going to put X equal to a, what do I get?

This side I will  get F(a), the other side I will get  Q(a−a)+R(a) ,  but R(a) is R itself

because it is a constant polynomial and this is 0, so all together it is R, so this R we have

found in terms of F and a that is F of a.

So that proves that F equal that proves the formula F equal to  Q(X−a)+F(a) , this is

what it proves. So when will X minus a will divide F, precisely then there is F(a)  is 0, so

that was the content of this corollary. So division with remainder then when we apply it again

and again then we lead to what is called Euclidean algorithm, so that is one way to find a gcd

one way to compute a gcd.
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If I have given two polynomials F and G, how do you compute a gcd of F and G? Okay, now

when we talk about gcd, gcd means first of all remember the long form greatest common

divisor, so why should it exist? We have seen in case of integers it exist and the method to

find a gcd was to apply divisional algorithm again and again, so only one step we have to

prove it.

So prove that this is I will put this as an exercise for you, so check that gcd of F and G, let us

say (F is) G is non-zero this is same as gcd of G and R. So you keep checking it like this so

you are reducing the problem to the smaller degree polynomial in this, okay so I will not go

much into this because otherwise we will  not have enough time to do the do our course

justification.

I will also note here one important lemma which is the analogue of the Euclid’s lemma what

we just mentioned for the integers that says that if a prime polynomial P, capital P is a prime

polynomial that means P is a polynomial over K over a field K and it is a prime polynomial

that means the only divisors are of the form a times P, where a is constant non-zero constant.

If a prime polynomial P divides the product F1 ...F r  this is the product, where F1 ...F r

are polynomials in K, then P divides one of them P divides one of F1 ...F r , atleast one of

F1 ...F r  atleast I should write atleast one of F1 ...F r . This is also very easy to proof so I

will not proof this, proof check. If you get stuck you should recall your proof for integers that

is like going back to the school, alright.
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So next fact I want to again mention that this is analogue again with the integers that is the

prime factorization.  So recall  over the ring of integers in the ring of integers any natural

number  n,  we can  write  it  as  either  +/-  that  is  this  sign  and  product  of  prime  numbers

ϵ p1
α1 ... pr

αr , where this ϵ  is ±1  and this p1  to pr  are distinct prime numbers

distinct and this α1  to αr  are non-zero natural numbers bigger equal to 1 there in ℕ

+ I will write that notation ℕ  + is non-zero natural numbers. 

So this we have been thought in the school that every number we can divide or we can write

it as a product of prime numbers and when you collect the powers of the same prime number

that is alpha 1 and so on and it is upto a sign and this factorization is also unique upto a



permutation unique upto plus minus 1 and a permutation of unique upto a permutation that

means what?

If I have another prime factorization then first of all the number of the distinct primes is

same, sign is same and the prime numbers they will differ only upto a permutation and to

avoid that we can also put a condition that p1  less than p2 , etc etc less than pr  then

obviously it will be unique because then there is no question of permuting. So this is a prime

factorization for integers. Similarly, we have a prime factorization for polynomials.
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So for polynomials, for polynomials what do we do? So now we are taking a polynomial F

over a field then I want to write this F, now that sign remember that now come as a constant

a, where a is in a field and then product of prime polynomials P1
α1 ...Pr

α r , where this P1

to Pr  are prime polynomials in K[X] prime polynomials, distinct and α1  to αr  are

non-zero natural numbers. 

And again such a factorization is unique, unique upto what? Unique upto now the elements of

K x  and now there is no way that we can say P1  less than P2  and so on, we have to

just say that it is unique upto multiples of K x  and permutation. So this is called a prime

factorization of F in K[X] and we know that every polynomial has a prime factorization that I

am going to assume that, but please go back and check all these things, best way to check is

recall your proof or ring of integers and then write the analogues of the polynomials in one

variable. 
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Now the next step is clear what I am going to do is among these prime factors I will look at

the degrees and I will order them according to the degrees degree 1, degree 2, degree 3 and so

on and therefore what will I do? Among them I will write the linear ones first, first of all

before I write that we have already also information about the degree so degree of F will be

equal to sum of degrees of the  Pi 's,  i  is from 1 to r and also the  αi 's  you have to

multiply by αi 's because the degree of Pα  in general equal to α  times degree P and

then the degree of the product you apply repeatedly that will be this formula. 

Now among the Pi 's I want to take out the linear ones first. So F will look like then a and

first  I  will  like  few linear  ones,  so  that  is  a(X – a1)...(X−as)...Q1
β1...Qt

βt ,  where  now

degree of Q j  is strictly bigger than 1, linear polynomials they will look may be they will

have coefficient of X here, but I am going to multiply all the inverses and I will absorbe in

this new a. 

So what I am saying is following, if the linear polynomial looks like this and I want to make

it in this form, then I am going to multiply this polynomial by a inverse and change the write

this b as minus b prime and then absorbe this a prime a−1  also here, so these all together

will become  X−b’ ,  so all  the linear  polynomials I can write in this  form and all  this

inverse they will get absorbed in this way then the some other letters, right.

So therefore in any case I will reform given F into this one and these are the degree 2 or more

polynomials. So obviously now what we know is all these  ai 's all these  a1  to  ar



they are precisely the solutions (s) are solutions of F and these Q’s they will not have because

I try to take possible. So let me just summarize what we have done in this lecture today at the

end  given  polynomial  F  with  coefficients  in  a  field  we  have  decomposed  into  prime

polynomials, some of them are linear, some of them are non-linear and the linear polynomials

we will precisely give the solutions of F equal to 0 in the field K.

So  next  time  we  will  starting  from  here  we  will  go  on  to  study  solutions  of  a  given

polynomial over a given field into a larger field. So this is a big project and we will slowly

get into the subject, how do we find all solutions and whether is it possible to have formulas

for them or not that is our main concern, thank you very much.


