
Galois Theory
Professor Dilip Patil

Department of mathematics
IISc Bangalore

Lecture 59 
Equivalence of Galois extensions and Normal-separable extensions

Okay, so in the last couple of lectures we have been studying normal field extension and

separable field extensions before that we have studied finite Galois extension. And also we

have given equivalent characterizations of Galois extensions and now we will use normal and

separable extension to give another characterization of Galois extension.

So let me begin with the notation,  so we have been studying field extensions and in this

course we have concentrated only on the finite field extensions. 
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So let L over K be a finite field extension and let us summarize what we have done so far, so

we have defined when L over K is Galois that was the definition was, this was the definition

this is when the Galois group of L over K has order equal to the degree of the field extension,

so the Galois group is  Gal (L∨K ) this is attached to any finite field extension and this is

nothing but the Automorphism of L as K algebras.

So elements of the Galois group are also called symmetries of the field extension, so when

the  number  of  symmetry  is  equal  to  the  degree  of  the  field  extension  this  is  maximum

possible because before this we have proved that the order of the Galois group is bounded by

the degree of the field extension, this we got it using Dedekind-Artin’s theorem.



So when the Galois extension has a maximum number of symmetries, the. So another thing

we proved was, this is if and only if, this was proved that Galois group, so the Galois group

operates on this and the , fix field of the Galois group action on L this is precisely the base

field K,  so here we have use the fact that Galois group of L over K operates naturally on L

and we have  computed the fix point of this action and that is precisely the base field then it is

Galois extension.

So that also gave us many examples how to construct Galois field extensions and also it gave

us way to compute the minimum polynomials of the elements, minimal polynomials also it

gave us way to compute the characteristic polynomials and also it gives us the concept of and

trace and it also gave us a chance to use linear algebra to study finite field extensions, so that

was what it.
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Now after that we have defined  normal field extensions and we have characterize them and

basically  the  normal  will  extensions  are  precisely  the  splitting  fields,  splitting  fields  of

polynomials finite normal extensions they correspond to the splitting fields of polynomials.

So  splitting field of a polynomial is you have a polynomial F in the base field then we know

by Kronicker theorem all the zeros of f delight in the algebraic closure of K, this is algebraic

closure of K.

We approved their existence and also we have proved their uniqueness and then you take the

subfield  of  K  generate  it  over  K by the  zeros  of  this  polynomial  and  these  are  normal

extensions and they have the property that if you call this as L every embedding of L into any



algebraically close field is algebraically closed, the  σ ,  σ (L ) will be containing L that is the

definition of normality.
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Okay, so that was normal extensions,  now we came to separable extensions, so the most

important property of the  separable extensions which Galois use in that we develop that here

that if I have a polynomial  f ∈ K [X ] and I have , so first of all separable extensions means

field extension is called separable if every element is separable. So separable if every element

is separable x∈ L is available but that means that is the minimal polynomial of X over K is

separable.

And separable polynomial meals that the definition is gcd of μx and its derivative they are co-

prime and this condition is equivalent to saying  μx, K  has no multiple zeros that means all

zeros a simple, so that is a separability and then we have the most important fact Galois use

was the separable extensions have primitive element then L is simple, L is of the form K [ x ]

for  some  x,  this  was  the  most  important,  this  is  called  primitive  element  theorem  and

remember we have also proved a primitive element theorem for Galois extension, so that we

have proved it very simple by using linear algebra.
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So now I want to state a theorem, so this is let L over K be a finite field extension then the

following statements are equivalent 1, L over K is Galois extension with Galois group AUT

K algebras as L this you have the noted by Gal (L∨K ). 2, the fix field fix Gal (L∨K )L equal

to the base field, this is a fix field of the Galois operation, Galois group operation on L is

precisely the base field. 3rd one L over K is normal and separable.

Note that in earlier course of lectures we have proved 1 if and only if 2 this was proved

earlier, very beginning of course when we started we have proved 1 if and only if 2 and I

want to make a few comments before I approve the equivalence of 1 and 3 or 2 and 3 that

normally  in  the  modern  books 3rd  condition  is  taken as  a  definition  of  the  Galois  field

extensions.

But in my opinion it doesn’t give a feelings for the subject because if you right away start

directly  with  a  definition  of  normality  and  separability  but  doesn’t  know  where  this

conditions have come from and how did one thing about it whereas if we have defined Galois

extension like I did it gave a natural feeling and it was indeed what Galois did it and we

followed completely historically as it went on.

And  this  will  complete  now  once  we  prove  this  theorem  this  will  also  complete  our

compatibility with the present-day courses. So therefore it is necessary to prove this theorem

because otherwise one might feel that we are different from the world, no we are not different

from  the  world  but  we  have  changed  the  order  of  studying  and  that  is  very  important

sometimes to study as it happens.
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So only now, only to prove if and only if 3, all right. So  first 1 implies 3,  so I have a Galois

extension and I want to prove L over K Galois given and I want to prove it is normal and

separable, remember we have proved that Galois extensions have primitive roots, so therefore

we know L is K of x for some x this we have proved earlier.

And  also  we  have  proved  that  the  simple  extension  if  it  is  Galois  then  the  minimal

polynomial  μx, K splits into linear factors splits into distinct linear factors in LX, so  this

simply means, so in other words that is 1, μx is separable polynomial and 2nd all routes of μx

they lie in L and this simply means L is a splitting field of  μx over K but this means it is

therefore  L over K is normal and this condition 1 means L over K is separable.

So we have  proved that  if  you have  a  Galois  extension  then  it  is  normal  and it  is  also

separable, so that proves 3.
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Now 3 implies 1, so we are assuming L over K is normal and separable and now I want to

prove that L over K is Galois extension. So to prove L over K is Galois extension note that

we have just couple of lectures, last lectures or couple of lectures back we have proved that if

it is a separable extension then it is a primitive element, so L is as a primitive element and

then because it is normal we know also it is a splitting field.

So normal,  so  μx,  K this  is  minimal  polynomial  has one root in L therefore  all  roots of

minimal polynomial should lie in this, so all the roots of this they are contained in L, so this

means that minimal polynomial x over K splits into distinct because, the minimal polynomial

is available because this extension is separable therefore this minimal polynomial μx, K is a

separable polynomial therefore μx splits into distinct linear factors in L [X ].

But we know then we have characterized earlier how do you check that simple extension to

be Galois? So the only easy way to test is that look at the minimal polynomial as a primitive

element and it should split into distinct linear factors in L [X ] already, so this proves L over K

is Galois this is proved earlier. So altogether we have finished the proof of this theorem that

Galois if and only if normal and separable.

Now  I  want  to  highlight  here  2  very  important  points  which  I  want  to  use  in  further

discussion and we have also used it many times earlier namely the following. 
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So this was always we have used, so whenever I have an embedding, so σ  belonged to  K

embedding of L into any algebraically closed field E and we have seen that this embedding

are independent of this E, so I could have simply taken this E equal to algebraic closure of K.

So actually easier way to say is this L over K we have a finite extension.

And therefore finite therefore algebraic and instead of saying K algebraic closure of K I take

the  L which is algebraic closure of L but this is same thing as  K  because this extension is

algebraic   therefore  L equal  to  K  equal  means  what?  Isomorphic,  so  better  to  take  an

algebraic closure of L it will contain L and therefore it will contain K also. So therefore one

writes equality here, so this is algebraic closure of L.

And if I have some polynomial of f in the ground field, coefficient in the ground field and if

some 0 of that polynomial and if I have any embedding then σ ( x ) this is an element in L but it

is also 0 of f and f of σ ( x ) is 0 this fact we have used it many times this is simply because σ

restricts addition and multiplication and also the K linearity will tell us this is the same thing

as σ ( fx ), the σ ( fx ) is 0 therefore this is 0.
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That is one I have repeated this many times but more than that I want to say something better,

so the remark I want to make is the following. 1, if L over K algebraic extension not only

finite but any algebraic extension and if I have a embedding, K embedding into L, so this is

Hom K algebra from L to L, so because L is a field algebraic field extension.

So L is a field therefore these here, these all embedding is our really injective mappings but

apriori it is not clear why should they be surjective but yes it is true that I want to prove this

equality in fact they are surjective also and so they are Automorphism of L as K algebra this

is what we called it a Galois group of L over K and we are debating why this equality.

So I want to prove that given any Sigma K embedding I want to prove it is surjective then σ

is surjective. So to prove σ  is surjective let y be in L given and what am I looking for? I’m

looking for x which is going to y under σ . So I’m looking for x in L with σ ( x ) equal to y this

is what we want to prove.
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But well we have given y, so we have given and y is in L, y is algebraic over K therefore it

has a minimal polynomial  μy, K this is a polynomial with coefficients in K and therefore I

have the zeros set, this zero set lies in and I look at the zeros of this minimal polynomial

inside L, this is inside L and definitely y is here therefore this at is nonempty set. This is

nonempty set and we have the σ  here L to L and now look at what do we know?

 is 0 set of minimal polynomial this is contain here I want to restrict the σ  to this 0 set, so

restriction will map to 0 set to inside that’s what our earlier observations says. The 0 set goes

inside 0 set under the embedding, so this goes inside, so I gate the map ID not it by same

letter I have a map on the finite set, same set to same set σ  is injective therefore restriction is

also injective and now it is a finite set a finite set.

Same set to same set injective mapping pigeon hole principle will tell you this is surjective, so

therefore  this y is here therefore it is coming from somebody, so  σ  this map, this map is

surjective and y is an element here therefore it has to come from x, so there exists x with σ ( x )

is y that is what we wanted to prove. 

So it is very simple the only observation is F you apply embedding to a 0 of some polynomial

it is a 0 of the same polynomial again, okay. So that is what this observation I want to use it

again and again, okay. So now I want to recall, I have defined it earlier but I want to elaborate

on what is Galois group of a polynomial?
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So the original problem what Galois was considering was given a polynomial f ∈ K [X ], so in

the Galois time the only field was they were considering was  ℚ,  so they were not  even

thinking about finite fields and characteristic positive fields and so on. But anyway we have

now  developed  the  theory  for  arbitration  field  and  we  have  a  polynomial.  Now  this

polynomial f we have proved that this is polynomial ring is a unique factorization domain.

So every  polynomial  has  a  unique  set  factorization,  so  factorization  will  look like  some

constant a π1
μ1…πr

μr where this is a prime factorization of f ∈K [X ], so this means this a is a

constant f may not be monic, so I have taken it out that constant is π1 ,…, πr a distinct prime

polynomials, prime polynomials are the monic polynomials which are irreducible they don’t

factorize further.

And is  μ1 ,…,μr are natural numbers bigger equal to 1 this is a prime factorization, so if I

want to study the zeros of f I might as well  forget this a and also I forget this  μ1 ,…,μr

because the 0 set will not change, so that I consider the red reduction of f this is by definition

π1 this product of distinct factors, this is called reduction of the polynomial f, so instead of

studying a 0 set of…

So note that 0 set of f and 0 set of reduction of f they are same they have not changed only the

multiplicity they have changed but they are not bothered about multiplicities because our

main  aim was to  find formulas  for the  zeros of  a given polynomial.  So this  is  we have

achieved.
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And now even further I want to assume that this is red, we will assume that this reduction that

I will denote red f of f is separable polynomial. Separable means it has only distinct zeros but

this  is equivalent it  is taking that this  prime factors pi1 to pi r are separable,  so we will

assume that, this we will assume. And now I consider the splitting field. 

So the splitting field of the reduction, , so the splitting field of f or the red f they are the same,

so that I will denote by L. So this L is nothing but K adjoin all zeros of F and without loss I

will assume now f equal to red f this we will assume, so I don’t have to keep writing it every

time. So this is a splitting field of f over K and because it is a splitting field it is normal and

therefore it is a normal extension.

And because the polynomial is separable it is a normal and separable extension therefore L

over K is a Galois extension. And in order to get the formulas or not formulas for a roots

zeros of f we have to study this Galois extension more intimately and that is what I will study

in this couple of lectures. 
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So we want to study this Galois extension and this Galois extension I am going to denote this

Galois group I’m going to this is called the Galois group of the polynomial f over K this only

depends on f, so this is called Galois group of f over K and we will study this Galois group

carefully little bit intimately and I will calculate this Galois group for some specific f in the

next half of this lecture.

So with this I will stop and they will continue this calculation in the next lecture, thank you.


