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Lecture 57
Characterization of Finite Separable Extension

In the last lecture we have seen that for every finite field extension the embedding of this field

extension inside an arbitrary (clo) algebraically closed field extension this number the number of

embedding is bonded by the degree of the field extension and this number is also independent of

the choice of the algebraically closed field extension of ℚ . So let me write in symbols what

we have proved?
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We proved if you have L over K finite field extension and E over K arbitrary algebraically

closed field extension then the number of K embedding of L in E this number is bonded by the

degree of the field extension and this number is independent of the extension E over K so this

that means this number depends only on L over K and therefore this number we define this

number to be seperability degree of L over K s, s in the notation here this is called the degree of

seperability of L over K that is the definition of, now we will prove that we will observe some

basic  properties  of  this  seperability  degree  or  degree  or  seperability  and we will  prove  that

equality happens if and only if the given field extension L over K is separable that is what we

will prove.
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So we are aiming to prove this a numerical criterion for the extension to be separable, so some

properties, some properties of this L over K (s) this symbol some people denote this symbol in a

different way for example when notation is L over K sep for seperability or also one denotes it

by simply by e L over K this e being for embedding cardinality of the embedding and so on but I

will stick to this notation they are also used ok. So the first property we have already observed if

proof L over K if L is simple a simple extension simple, finite simple ofcourse simple algebraic

extension of K then this K [ x]  over K this set s this is nothing but cardinality of the zeros of

μx , K  (in L) in K [ x]  that is the number of distinct roots of the minimal polynomial in K.

This was precisely done when we did zeros and embedding so I want to recall now this is what

we have done in the when we were discussing in the lecture zeros and embedding in that lecture.

So that was one, second if you have field K contained in M contained in L finite field extensions

then  the  L  over  K  s  is  M  over  K  s  times  L  over  M  s  this  behave  like  a  degree  so  like

multiplicative , so let us prove this. 
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So proof  of  proof,  let  E over  K be an algebraically  closed field extension then we want  to

understand what is an embedding, how many embedding are the K embedding are there from L

to E and what is that relation with embedding of K M to E this and obviously embedding of M to

E(L to E) lets see we want to understand this two sets and we want to relate their cardinalities.

So  first  of  all  look  there  is  an  natural  map  here  this  remember  embedding  is  a  K algebra

homorphism from L to E this are K algebra homorphism from M to E all are fields and this

numbers will not depend on the algebraically closed field that we have chosen that we have seen

already. So the σ  is from L to E this maps to σ  restricted to M because if σ  is from L

to E then it just say restrict means this is from M to E and this is obviously surjective because if I

have an embedding from M to E I just ok, so by remember by Steinite’s Theorem that tells if you

call this map I want to call this map what I can call it alpha the map alpha is surjective, how does

it follow let us indicate that, that is due to Steinite's Theorem you see here we have M here, M to

E we have and they are K embedding they are K linear that means this diagram is commutative

so we have given this say τ  and L is here this is and this extension is finite therefore algebraic

and Steinite's extension theorem says that whenever I have algebraic extension and K algebra

homorphism inside an algebraically closed field then I can extend it (a σ ).

That precisely means this whenever I give an embedding of M in E I can extend to L so that

means this map is surjective that is from Steinite's extension theorem. Now if both are finite sets



both this are finite sets because their cardinalities bonded by the degree of the lower K and this

cardinality is bounded by M over k and L over K is finite extension therefore both are finite sets

and subjective map and therefore I want to infer about their cardinality I should know what are

the fibers, so what are the fibers? 
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So fibers of alpha what do that mean? That means if I fix τ  (so fix) for a fix τ  for a fixed

embedding K embedding τ  from M to E I want know how many extensions are there.

So that one for a fixed τ  and σ  belongs to the fiber of τ  that is if and only if σ  is

an extension of τ  to L so in the diagram that means given this I have L here and extend it to

here that is σ  so the number of σ  i have to count ok but therefore the cardinality of the

fiber is precisely extensions from M to L, so that is if and only if this σ  belongs to embedding

over M of L to E if I fix this  τ  then this  σ  so is uniquely determined by so this means

what? 

This means ok so we have so this means now note this is from Set-theory I want to recall, this

means so suppose we have two sets X and Y and a map between them alpha and suppose this

alpha is surjective and all fibers of α  have same cardinality both are finite sets and suppose

the fiber all fibers of the same cardinality equal to r how do you compute the (cardinality) what is

the relation between the cardinality of X and cardinality of Y? then we know cardinality of X

equal to r times cardinality of Y this is very easy to see and we are in the similar situation we



know that this alpha is surjective, alpha is surjective and I want to relate the cardinality of these

two sets that is why I wanted to know what are the fibers.

But fibers are in one to one correspondence if the embedding of L to E over M and therefore we

know cardinality of embedding of L into E this is same thing as cardinality of the fiber that is

cardinality  of  embedding  of  L over  M in  E  times  cardinality  of  the  image  where  it  is,  so

embedding of M into E that this are precisely what are this precisely? 
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This are precisely L over K s equal to that is L over M s times M over K s so that proves this

proves 2, I just want to remind you here that though I wrote this if and only if σ  belongs to

the embedding over the so this is quite it is little bit this is little bit abuse of notation because all

that we know is σ  is an embedding of τ  to L.

So this is actually one should write it here that it is embedding of this doesn’t depend on the τ

so it is independent of the τ , so all fibers have the same cardinality. So I will just caution here

saying that  check this,  ok so we have proved that  the degree  of  seperability  behaves  like  a

degree. Alright now theorem I want to prove is so theorem I want to prove is let L over K be a

finite field extension then L over K is separable if and only if L over K is equal to L over K so

equality  hold  so  this  side  right  side  is  just  a  numeral,  two  numbers  are  equal  and  that  is

seperability which is define in terms of every element, so that is advantage.



So proof, alright so first let us prove this side, so we want to prove that as shown in this equality

we want to prove that every element is separable. So let X be an element in L we want to prove it

is separable, to prove X is separable over K alright now we know that so look at we are in this

situation  K is  here,  K (x)  is  here  contained  in  L is  here  so we have this  tower of  field

extensions therefore we know L over K is equal to K (x)  over K s times L over K (x)  s

this property 2 I am using and this I know it is equal to L over K given and this we know it is

K [ x]  over K times L over K [ x] , now this equality is given so from there I infer that the

equality holds each one of them.
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So therefore k x set s equal to K [ x]  over K simply because we know this is small or equal to

this and this is also small or equal to this so if it is both of them have to be equal to this because

if one of them is smaller then the corresponding product will be smaller so therefore this and we

know what is this, this have proved this is nothing but the number of zeros so this is V (μx , K)

L this is K [ x]  so that means this is the number of zeros of the polynomial μx  in this but

that will mean that the number of zeros so what do we want to prove that this (numb) they are

distinct so we want to check that so to check that x is separable we should check that μx , K  is a

separable polynomial that means it has the number of zeros is exactly if you take an algebraic

closure the number of zeros of  μx , K  is precisely the degree of that but this is the degree of

μx , K  and this seperability degree is what? 



Seperability  degree is  precisely so don’t  use this  ,  this  seperability  degree  is  the number of

embedding of K [ x]  inside an algebraically closed field this is algebraically closed and how

many embedding are there? There are precisely the number of zeros in μx , K  number of zeros

of μx , K  in E that is because so the each zero you can define them at I am conversely each this

we have proved earlier this is proved earlier therefore this cardinality is equal to this cardinality

of the embedding which is by definition seperability degree and seperability we have proved this

equality but this is a degree therefore this numbers equal to degree so that means  μx , K  is

separable, that means this μx , K  has so many roots in E.
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So we have proved this, so therefore we have proved one way that if it is a if equality holds then

it is a separable extension conversely so this way conversely we have suppose that L over K is

separable then I want to prove that the equality degree so seperability equal to the field extension

degree. Alright so L is finite separable so therefore L is generated by finitely many elements

x1,…, xn  and each  x1,…, xn  is separable over K all elements are separable because the

field extension is separable and the finite extension therefore it is generated a finitely many of

them and now I am going to prove this assertion by induction on this n.

So I will prove by induction on n what we will prove? That this L over K set equal to L over K,

this is what we want to prove, so look here K is here L is here K [ x1 ,…, xn]  and then we have



M inside M is just one less K [ x1 ,…, xn−1]  and this. Now I have the tower of filed extension

and this L is M over xn . Now this is separable therefore this extension is also separable and

this also is separable because  xn  is separable over K therefore  xn  is separable over M

because μx , K  and μx , K  what is the relation in general? 

If I have field in between then this divide this in  M [x ]  that is the relation. So divisor of a

separable polynomial is always separable so because of that both this extension are separable

therefore  by induction  I  would have had proved that  M over  K s equal  to M over K is  by

induction and also L over M s equal to L over M and then you multiply them all.
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If I multiply this all we have proved a property that this product is same thing as so L M s times

M over K s this is equal to L over M s this is by property 2 we have checked and this is by

induction it is L over M times M over K but this is L over M, L over K.

So therefore this equal to this we have proved and therefore we have proved theorem that the

extension is separable if and only if degree of seperability equal to the degree of field extension

alright. Now I want to prove so called primitive element theorem, so Primitive Element Theorem

actually we have proved a weaker theorem than this we have proved a primitive element theorem

for Galois extension but we don’t have the assumption that extension is Galois but we only know

the extension is separable. So let L over K be a finite separable filed extension then we want to



prove that then there exists x∈L  such that L equal to K [ x] . So that means that is x is a

primitive element for the field extension L over K it is a simple extension alright. So how I am

going to prove this? 
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Well  I  am going to prove this  by using the embedding I  will  use embedding to choose this

element x correctly I may recall that in case of Galois extension we have also use elements of the

Galois groups we thought them as a linear maps and then so what was the proof for Galois in if L

over K is Galois I just want to recall that I want to imitate the ideas if this was Galois then we

looked at the Galois group Gal(L∣K )  this is a finite group so if you have any element σ  in

this so that means the  σ  is K algebra homorphism from L to L, K algebra auto-morphism

actually and therefore it is a linear map from L to L, k linear map in a finite dimensional vector

space.

So we look at the Kernel’s of this σ  and they are if σ  is not identity ( σ  is not identity)

this are proper subspaces of a finite dimensional vector spaces L this is a n dimensional vector

space where n is the degree of a field extension and we have chosen an element out so the unions

of this Kernel and that give the primitive element so similar thing I am going to do it for the

embeddings so this we will do it after we take a break we will continue this proof and as a

consequence we will prove that an extension finite field extension is Galois if and only if it is



separable and normal, this was what the another equivalent definition of the Galois extension, so

we will do this after the break, thank you.


