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Perfect fields

Okay,  last  lecture  we have  been seeing  about  field  extension,  Galois  group,  and normal

extensions. Today I want to start with separable extensions and to do separable extensions I

1st digress little bit on the separable polynomials so let us recall that.
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We have also used this terminology before so let K be a field, so this is our base field and f is

a polynomial with coefficients in X with coefficients in K. So recall that when I write f ’

that is by definition 
d
dx

 of f, this is formal derivative of f that simply means you just use

the formulas like  
d
dx

 of the powers of  X r  that is by definition  r X r –1  and use the

linearity. So this  
d
dx

 is a linear map from the polynomial ring in one variable over K to

itself, this is K linear where the bases element here that  X r  that goes to  r X r –1  and

extended linearly.



So therefore given any polynomial f, we have another polynomial f ’  and the degree of f

and degree of  f ’ , so the degree of f will strictly be less than degree of  f ’ . It might

happen it is much less, it might so let us list some of the easy facts about this.
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So for example, let us write it as lemma so K field and f belongs to K [X ] , then f ’  is 0

if and only if f is either constant, f is constant or characteristic of the field K is p which is

positive and there exist a polynomial g in K [X ]  such that f will be equal to g of X power

p. So only the powers of  X p  are surviving as coefficients in the polynomial f, only the

coefficients of powers of  X p  are nonzero, other coefficients are 0. This is very simple

proof, this follows immediately from the fact that if I differentiate  
d
dx

 of X pr , this is

pr X pr– 1 , but p is characteristic so this is 0 therefore this is a 0 power.

So therefore, if f ’  is 0 it cannot have X i  coefficient of X i  in f is 0 if i and p are co-

prime, GCD is 1 because if i and p are co-prime, this i when I differentiate this, this is i times

X i –1  and i is non-zero in the field because it is co-prime to p therefore it is immediate

from this this equivalence so I leave the details to verify they are very easy. Okay now also

immediate from this is the following so another proposition.
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This says the following, if we have a polynomial K field and f is a polynomial in K [X ] ,

remember that our goal in this course is always to study zeros of a polynomial so and that

includes multiple zeros. Now I am going to reduce the study to the simple zeros so therefore

we want to state some easy facts about when the zeros can be multiples. So and suppose L

over K is field extension and we are looking at the zeros of f ∈L , these zeros and among

them I look at the multiple zeros so the multiple this is the set of zeros  x∈L  such that

f (x)  is 0. We know that there are utmost degree f times as many as degree f utmost and

among them multiple zeros, so multiple zeros of f ∈L , this set so this is precisely the set

of zeros of L in L of the GCD so this is also clear.

So proof, so we know multiple zeros are precisely the common zeros of f and f ’  so these

multiple zeros of f, this is precisely V L ( f )∩V L(f
’
)  . And also we know this equality will

follow from this equality and the fact that GCD of f and f ’ , we can always write it as a

K [X ]  linear  combination  of f  and  f ’ ,  where Phi  and Psi  are some polynomials  in

K [X ] ,  both  these  equalities  will  give  you  this  so  I  will  leave  that  details  to  the

verification, alright.
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Now let us recall when do you call so definition, a polynomial f in K [X ] , where K is a

field is called separable over K, I will drop this over K always saying, it will be understood

from the context I write, this is separable if and only if that this is the definition that GCD of f

and  f ’  is a unit that is 1 alright. But this is equivalent to saying obviously that in any

algebraic closure K  of K, f has exactly degree f zeros that is in symbols cardinality of the

zero set of f in K  is precisely equal to degree of f, this is then we call the polynomial to be

separable over K, alright.
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So  first  of  all  easy  consequence  so  note  that  an  irreducible  polynomial  in  K [X ]  is

inseparable, when I say inseparable that means not separable if and only if f ’  = 0. This is



easy because if f ’  is not 0 then the GCD will be if it is inseparable then the GCD has to be

non-constant polynomial therefore  f ’  is 0 alright. So okay let me write proof, I have to

check that I have given that the polynomial is inseparable, inseparable means so there exist a

multiple zero of f.

When do there exist multiple 0? That is if and only if GCD of f and f ’  is nonzero, not

equal to 1 that is what we have seen in this earlier proposition, this proposition is precisely it

is a multiple 0 is precisely the common 0 of f and f ’  and that is equivalent to saying GCD

is non-constant polynomials that is precisely inseparable definition but this GCD is non-one

means that is if and only if GCD has to divide both f and f ’ , but that will mean and if f is

irreducible so that will mean that the only possibility for GCD equal to f and then f has to

divide  f ’ , but by the degree ground that we will say that  f ’  is 0 since degree of f is

strictly bigger than degree of  f ’ . So therefore inseparability of a polynomial is simply

tested by computing the derivative of that polynomial and checking whether the derivative is

0 or not 0, alright.
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So we know about the polynomial being inseparable,  so now I want to define so another

definition, a finite field extension is not necessary, let L over K be any field extension, may

not be an algebraic. So an algebraic element x in L is called separable over K if the minimal

polynomial of x over K is a separable polynomial. But we know this is equivalent to saying

that the zeros of  μ  in  K , this cardinality is precisely equal to the degree of  μx , K ,

this is what we call the element to be separable and we will call the finite field extension L



over K is called separable if every element is separable, every element x in K is separable

over K.

So before we go onto the theorems about separable extension, I would like to give examples

of  a  algebraic  extensions  which  are  separable  or  examples  of  the  field  K  where  every

algebraic extension of K is separable, so those are precisely called perfect fields so some

examples.
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First of all, if characteristic K is 0 then every finite extension L over K is separable that is

very clear because in case of characteristic 0 irreducible polynomial cannot be inseparable

that we have seen because inseparability is equivalent to saying that the derivative is 0 but

that  can  only  happen  when  the  field  when  the  polynomial  is  a  constant  polynomial,  so

characteristic 0 case every finite extension is separable. Now 2, so called perfect field so this

is what I want to digress on perfect fields.

So first the definition and then we will check that the fields are perfect okay so perfect field

means so we have a field K and there are 2 possibilities for this, characteristic K is 0 or

characteristic K equal to p and in this case we would like every characteristic 0 field to be

perfect, so let me complete the definition. So an characteristic p K we have this Frobenius

map  f p, f p  is from K to K, the map is any a going to  ap ,  remember this  is called

Frobenius and this is a K algebra automorphism that is clear because we have to check that

respect  to addition  and multiplication,  multiplication  is  obvious and addition  because we



know it  is  a  characteristic  is  p  therefore  a  +  b  when  you  expand  by  binomials  we  get

ap+b p  so that shows that this is a K algebra automorphism.

(Refer Slide Time: 18:38) 

And therefore we can talk about the image of this, the image of this Frobenius in f, these are

precisely the elements p powers of elements in k, this is also I will denote it by pK , I will

denote p on this side because if I write it on this side one might get mistake with K power p

which is the vector space of dimension p that is not what we mean here, this is the p powers

of elements from a so therefore this is clearly containing K and now we say that K is perfect

so definition K is perfect if either characteristic of K is 0 or f p  is bijective that means this

means f p  belongs to Aut K.
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 I  made  mistake  by  saying  here  this  is  not  a  K  algebra  automorphism,  this  is  a  ring

automorphism. All that one can say that this is a ℤp  algebra automorphism ℤp  algebra

automorphism because characteristic is P therefore K will contain ℤp  as a subfield and as

a ℤp  algebra it is a ℤp  algebra automorphism.
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So this frobenius is an element in this  f p  is an element in Aut  ℤp  algebra K if it is

surjective this is  ℤp ,  this is if  f p  is bijective,  but because it is a field it is always

Injective and therefore surjectivity of f p  is more important alright, so that is field is called

perfect if either characteristic is 0 or frobenius is a bijective map equivalently  f p  is an

automorphism of ℤp  algebra okay alright. Now we want to so first of all some examples



of perfect field, so examples so ℚ  is perfect or any other characteristic 0 fields are perfect,

finite fields are perfect finite fields no matter what their characteristic is,  finite fields are

perfect.

This is simply because we have to check that f p  is surjective so if K is a finite set, I know

because K is a field and this is a ring automorphism, this is always injective and to test

surjectivity in case of finite, if K is finite it is enough to check that it is injective. So K is

finite so the pigeon hole principle will tell that  f p  is actually bijective so therefore by

definition finite fields are perfect, alright.
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At least 1 example of a non-perfect field, so example of a non-perfect field. Okay that is now

you take for example, you take ℤp  and take rational function field in one variable this is

my field K, note that the characteristic is K characteristic is p positive okay. And now let us

look at the frobenius. Frobenius f p  this is a map from K to K any f in a rational function

Phi going to ϕ
p , in particular X is going to X p  and if I have a polynomial f (X )  it is

then going to f of X power p because  this map is ℤp  linear so polynomial has coefficients

in ℤp , this is the polynomial in coefficients in ℤp  therefore by linearity it is X. I know

where X go therefore I know where the whole polynomial will go so that is it.

So therefore I say the image of f p  is precisely you take all rational functions and take, so

image of f p  is precisely ℤp(X
p
) , they are rational functions in the p power of X. 
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Now note that  ℤp(X )  this contains this field  ℤp(X
p
)  and this is I claim that this is

nontrivial so this is not equality here because for that we just have to check that X does not

belong to ℤp(X
p
) , this just follows from the prime decomposition in ℤp(X )  so I will

not say more about this but we know now we have we have this field extension, this is a

proper field extension this over ℤp(X
p
) . And the element X is algebraic over ℤp(X

p
)

and  what  is  the  minimal  polynomial?  Minimal  polynomial  of  X over ℤp(X
p
) ,  this  is

T p – X p , T is a variable I am using because I do not want to use the variable X again.

And this polynomial is irreducible obviously, how do you check this equality? This equality

you can simply check this X is clearly 0 of this polynomial and this polynomial is irreducible

over ℤp(X
p
) and to check it is irreducible over this, enough to note that this is irreducible

over  ℤp(X
p
)  and  for  that  you  can  use  Eisenstein’s  criterion  we  apply  it  here,  it  is

irreducible and therefore over rational function field of that, quotient field of this is precisely

this therefore it is irreducible that is for say minimal polynomial.



(Refer Slide Time: 27:26) 

So therefore this degree extension the degree of this extension field is precisely the degree of

the minimal polynomial  μx  over ℤp(X
p
)  but this is precisely p so the degree is p so

therefore  frobenius  map  images  not  the  whole  but  it  is  not  too  bad,  it  is  only  a  PDV

extension, so therefore what we check is ℤp [X ]  is not perfect. And I would not I would

not like to write one characterisation of perfect field which will be more important for us so

let me state it so proposition; let K be a field then the following are equivalent. 1, either

characteristic K is 0 or characteristic is positive p positive and f p  is bijective, this is the

definition of perfect.

And 2nd, every irreducible polynomial in K [X ]  is separable, we will see the proof of this

soon when we come back after the break we will see the proof of this proposition and then we

will continue about our study of separable extensions. And the main goal in this lecture will

be to prove that separable extension has a primitive element  like we have proved earlier

Galois extensions have a primitive element and now we are proving a weaker theorem that

separable extensions have a primitive element. This proposition we will prove after the break

and we will continue separability, thank you. 


