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Right, last lecture we saw algebraic closure of a field exists and they are unique up to K

isomorphism, now we come to the proof of fundamental theorem of algebra. So we are going

to prove the theorem. This is also called FTA, fundamental theorem of algebra, also, if you

see the books, it is it is stated as D'Alembert Gauss. In French books it is written as theorem

of D'Alembert, in German books it is written as theorem of Gauss and in English books it is

written as theorem of D'Alembert Gauss.

So the field ℂ , this is the field ℂ  of complex numbers is algebraically closed. So we will prove

that  every  nonconstant  polynomial  f  with  complex  coefficients  has  a  zero  in  ℂ .  This  is

equivalent to Checking ℂ  is algebraically close, every nonconstant degree is bigger equal to1,

it has its complex zero, this is what we need to prove. Proof, what will be used in the proof,

that is 1st I will indicate. So 1st of all note that the definition of ℂ  is not completely algebraic.

So we have seen rational  numbers, then real numbers and then complex numbers, this  is

contained here, this is contained here and there is a big gap here, this gap is big and this is

small, this is degree 2 extension. This is in fact ℂ  is 
ℝ [X ]

⟨ X2
+1 ⟩

. And this polynomial does not



have real  zeros,  this  is  irreducible  because  ℝ has  order.  So  no square  will  be  negative.

Therefore this polynomial is prime over ℝ, therefore it generates a prime ideal, also this is a

feel in that field is precisely ℂ .

This was what Cauchy's and here we need limits. So definitely we will have to use some kind

of algebra, some kind of calculus. And the, this proof will contain least of calculus and more

of algebra, that is what it is planned here.
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Okay, this is one remark and 1st observation I want to do that this is easy, it is easy to check

that if I have every polynomial of odd degree, odd very important, odd degree g in ℝ [X ] with

real coefficients has in zero in ℝ. This is very easy, what do is try to plot the graph of this

function g. So observe that when you take X large positive, then obviously the sign of the

g (X ) will be positive. So assuming that without laws we assume that leading coefficient of g

is 1. If necessary we divide by that because we only have to say something about 0.

So because of that the value g (X ) will depend, we will be dominated by the leading term of

the polynomial, which is X n. So when X is large positive, this will be positive and similarly

when X is large negative,  then the polynomial,  the value of the polynomial  at  X will be

negative. So therefore the nature of the graph of g will be like this. So therefore it has to cross

x-axis at least once, maybe several tough but at least once. 
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So therefore now use Intermediate Value Theorem, so that it causes the x-axis, that means it

has at least one real 0. So, this was observation 1. The another observation, we use is the

following. This is observation 2, every complex number z∈ℂ is a square of some complex

number w. So, that is there exists  w∈ℂ such  w2
=z. This is what we will also used in the

proof later. You are given z, z complex number is given. So look at the polar representation

of this f.

That means what, this is z, z is somewhere here and this radius and this angle. So this is z we

can write it as, this is r e i θ where θ is in between 0 and 2π . Actually you can make it more

precise but it is okay, 0 is in between these and r is a positive real number. So this is r is in

fact, if z, if z we have written it as x+iy then r is nothing but √ x2
+ y2, this is |z|. And Theta is

the angle that it makes. So once you have z like this, then you have a positive real number,

positive real number has a square root in real numbers.

So therefore I can talk about square root of r which is again a real number, since r is positive,

this exists. And so therefore I can take w equal to square root r e i θ/2, take the half angle. So

this is clearly when I square its, this will be r and this will be by De Moivre or , so this is e

power i Theta, which is z. So every complex number has a square root and complex numbers,

that  I  am  going  to  use,  and  every  odd  degree  polynomial  has  a  real  zero,  with  real

coefficients, all right.
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So, also I will use Kronecker's theorem, which says that if I have a polynomial over arbitrary

field, nonconstant, then I can enlarge the field so that all zeros are lying in that field. So this I

will not straight again, so this is what I will use here. Now let us start the proof. So, proof of

FTA, so let f be a polynomial with complex coefficients, degree f bigger equal to 1, this is

given to us. Okay, 1st of all let us denote f bar to be the polynomial which I obtained from f

by applying  conjugate,  there  is  a  complex  coefficients,  so  I  will  apply  conjugate  to  the

coefficients.

So this is  a0+a1 X+...+an X
n.  So, where f is,  f  was  a0+a1 X+...+an X

n.  So this bar means

complex conjugation, okay. So this is another polynomial in ℂ [X ]. It is clear that f equal to f

bar if and only if this polynomial has real coefficients. That is precisely because we know

that a is a, x is a real number if and only if x=x, all right. So, now we want to show that this f

has a complex 0.
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So replace f by f . f . Now look here f . f  is a new polynomial, this is also polynomial in ℂ [X ],

but the advantage is this is actually real polynomial because when I take the bar of that, will

get, so f by f, we are replacing f by f . f , the advantage is this polynomial f times f bar has

actually  real  coefficients.  Because,  how do  I  take  somebody,  some polynomial  has  real

coefficient, I take a bar of that, bar of that is ring homeomorphism, so it is f f  but this is f f ,

which  is  the  same  polynomial.  It  is  commutative,  so  it  is  f . f ,  therefore  it  has  real

coefficients.

And if I proved that this polynomial of the complex zero, so if z∈ℂ is a zero in this product

polynomial, but this is same thing as f ( z ) . f ( z ). And if this is zero, then this, one of them is

zero at least,  f ( z ) is zero or have  z is zero. If  f ( z ) is zero, we are happy, that is what we

wanted, if this is zero, then you take the bar of that, so f ( z ) and bar that is also zero. But bar

of that is same as f ( z ), this is zero. But f  is f, so this is equal to f ( z ) which is zero.
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So either this or f ( z ) is zero. In either case they found a complex zero. So therefore without

loss I will assume the polynomial has a real coefficients. So, we may assume therefore f is

actually polynomial in ℝ [X ] and we are looking for f has a zero in complex numbers. And we

see it may not have a zero in  ℝ that our typical example is  X2
+1 or for that matter any

positive number, any positive real number a, we can talk about positive, negative and so on.

So this for example  X2
+a, that cannot have zero in real numbers, because if it has a zero,

then if it is b, b2 will be equal to - a, - a is negative but b2 is always positive. So, therefore we

cannot hope to find a zero always in real numbers, all  that.  So we may assume f is real

number, f has real coefficients. Now look at the degree of f. Degree of f we know it is bigger

equal to 1, it is nonconstant. So I can always write in the form this is d, which I can always

write in the form 2nq, where q is odd. q is odd and n is a natural number, n maybe zero also.

And I am going to prove the assertion, proof that, proof by induction on n. This is what I will

do. What will be the assertion? By induction I will prove that this f has complex zero, this n.

And q is  odd means 2 does not divide q. This is a set.  So induction will  always started

n=0 , n equal to 0, what is the degree of f? Degree of f, n is zero, so degree of f is q,

which is odd. Therefore what I explained in the beginning, therefore f has a, actually in this

case f has a real zero.

Again I will say intermediate value Theorem. So, if you see in the history, intermediate value

theorem was proved by Bolazano. This was proved by Italian mathematician Bolazano and he

did not call intermediate value theorem, he called it zero theorem. So he called, he also stated



in this  language that it  has a real  zero.  Alright,  so therefore our induction starts.  So our

strategy  will  be  now  to,  from a  given  f  which  is  the  real  coefficient,  construct  a  new

polynomial which has a real coefficient and this exponent of 2 drops and therefore we can

apply induction approach.
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This is to assume that the new constructed polynomial has is zero and from that zero we have

to go back to the given polynomial, that is the strategy. Alright, so what am I going to do? So,

first of all, so that is, we know by Kronecker's theorem tells, Kronecker's theorem says that I

can enlarge my field of real numbers, there exists a finite field extension L over K or L over

ℂ , such that f, I can write, split in L[X ] , this I am writing in L[X ] , I will assume it is

monic for simplicity.

So it  will  be like  (X – a1) ...(X−ad) ,  ad  because the polynomial  has Degree d and

a1  to ad , they are elements in L. Because the same polynomial I will think polynomial

with complex coefficients, though it has real coefficient. I enlarge the field L, so that it has all

the zeros lying in that field. And I want to now prove that at least one of the zeros is a

complex number. So to prove ai belong to see for some i, that is what we need to prove. This

is what we need to do.

Alright, so all our calculation is done, this, this is done because all our calculation we are

doing it in the field L or all the polynomials we are writing in L[X ] , that is why we have

chosen bigger field so that all the equations etc. we will write in L. Alright, now that is our

aim, that we want to check that at least one of them will lie in ℂ . And but you will see the



proof, 2 of them will I see, that is because this has a real, where assuming this is actually real

coefficient and we know therefore if we have a complex zero, one zero, then conjugate of that

is also zero. So you will get into zeros, that is not surprising. So that will also come out in the

proof.

Alright, so what am I going to do with this now? I am going to, for a fixed real number ℂ  in R

and any pair one less than equal to i strictly less than j less equal to d. For this I am defining

bij 's,  these  are  another  numbers,  all  these  are  happening  in  L,  this  is  by  definition

ai+a j+c aia j , this is  bij . Strictly speaking I should write the notation  bij  and this

bij  depends on this c and therefore I write bij(c ) . But I will, I will use this only when it

is necessary, it will come at some stage where I will have to use this, then it depends on c. 

But right now c is fixed and I am considering this bij  and with this bij  I am considering

new polynomial. Remember our problem is to construct a new polynomial whose degree, in

the degree, the power of 2 drops. 
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So we are considering now a new polynomial, consider a polynomial new g(X ) , this is by

definition product, product is running over 1⩽i< j⩽d , X−bij , look at this polynomial.

So where is this polynomial, this polynomial a priori in L[X ]  because aij  is in L, and R

is in L, therefore c is in L and therefore all these coefficients, all these products is in L. So it

actually splits in L and these are the roots. What other degree, so let us find out what is the

degree of g. Degree of g is the number of pairs with this property.



So, this is cardinality of the set of all pairs i, j, such that  1⩽i< j⩽d , this cardinality is

precisely, this cardinality is precisely, you know it is, d choose 2, which is  d (d−1)/2 ,

which is half d I know, d we have written as 2nq . And remember we are assuming now

what, we are assuming n is at least 1. And therefore d is, what is d, d is able to power n q, q is

odd. Therefore, d is even because n is at least 1, so d -1 is odd, so this is odd, this is odd,

therefore this is odd and this power of 2 is now 2n−1  times some odd integer.

So the degree of g has in the power of 2 has dropped there, so therefo re I will be eligible to

use  the  induction  hypothesis  provided  I  have  to  assure  that  this  polynomial  has  a  real

coefficient.  That  is  what  we have,  right  now I  only  know this  polynomial  has  only  the

coefficients in the field L but now I want to check that this polynomial has coefficients in real

numbers. 
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Alright, so we want to check that g(X )  is indeed a polynomial ℝ[X ] , so that we can

apply induction approaches. So why that, now look at the coefficients of g. Coefficients of g

are, so what are the coefficients? So, look here, I have the g and the coefficients, when I

multiply it out. They are elementary symmetric functions in bij, are elementary symmetric

functions  in  bij.  And  what  was  bij , bij=ai+a j+c aia j .  And  therefore  they  are,  so,  so

therefore  they  are,  so  that  implies  coefficients  of  g  are  symmetric  functions,  symmetric

polynomials I should say, symmetric functions in a1  to ad .



That is also clear because when I change, when I permute this a ij, this bij will go to some

bkl,  so  therefore  they  are  symmetric  functions  in  a1  to  ad .  I  cannot  say  they  are

elementary  symmetric  functions  in  a1  to  ad ,  but  there  are  elementary  symmetric

functions  because these are  elevated  symmetric  functions  and those are,  when I  permute

ai , they will not change, so they are symmetric functions in a1  to ad . So therefore

our fundamental theorem on symmetric polynomials says that these symmetric polynomials

are  polynomials  in,  so  the  coefficients  of  g  are  polynomials  in  elementary  symmetric

elementary symmetric functions in a1  to ad .
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But what are the elementary symmetric functions in a1  to ad ? So, therefore coefficients

of g and where are the coefficients, with coefficients in R, because our base field is ℝ . So

coefficients of g are polynomials in elementary symmetric functions in a1  to  ad , they

are the coefficients of, coefficients of the given polynomial f. So the coefficients of g are

polynomials  in  the  coefficient  of  f  with  real  coefficients.  So  altogether  that  proves  that

coefficients of g belong to ℝ .

So we have proved that this polynomial g is actually polynomial with real coefficient. And

we have  used  your  nice  theorem  which  is  element,  fundamental  theorem  on  symmetric

polynomial. Alright, so we have established the fact that coefficients of g are in ℝ . So this

g belongs to  ℝ[X ] , we have already noted that degree of g is  2n−1  times some odd

number, some order number. So therefore by induction hypothesis, hypothesis, one of the

zeros of g should lie in complex numbers. 



So, there exists a pair i, j with 1 less equal to i less than j less equal to d, such that this bij

which  is  ai+a j+c ai a j ,  this  should  belong  to  complex  number,  this  is  by  induction

hypothesis  because  I  have  polynomial  with  real  coefficients,  a  power  of  2  has  dropped,

therefore the, so this is, this was happening for every c real numbers. So strictly speaking I

should write now c. So, let me write that, that is very important now. 
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So, I am rewriting this, rewriting rewrite, what did you get? For every c in numbers, I found

everywhere, the pair will also depend on c, i, c, j, c, such that 1 less equal to i, c, j, c less

equal to d and bij  e which is ai , c + b, not b, a j c  + e times ai c a j c , this belongs

to complex numbers for every c. But, now note that, that means what, we have defined a map,

so that is we have defined a map from R to the best with this property, we have defined a map

from ℝ  to i, j such that 1 less than equal to i strictly less than j less equal to d, this pair.

This is a finite set of cardinality d choose 2 and we have map namely c going to (ic , jc) .

So we have a map, this, we know real numbers is infinite set and the set is finite, so this map

cannot be injective, this map cannot be injective, therefore there are 2 non-equal real number

so that they have the same pair. Same pair means what? That means  bij c  and  bij c
’ ,

there equal. But what does this quality means? This equality means what, this equality means

what? This equality means, so this pair is, so they are going to same pair, c and c’  go to

the same pair, that pair I am calling it i, j. So this c goes to this and c ’  also goes to that.
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That means what bij c, this is ai+a j+c aia j  and this is also equal to bij c
’ , that means

this is equal to ai+a j+c
’a ia j , and c is not equal to c’ . Now subtract these equations, if

we subtract it, this will go away, so when subtract we will get this ai will disappear,  a j

will disappear and c−c’  will be ai aj, so this c and c’  is in real numbers. So, this is, this

is I know this is a real, this is, these are same, and we know they are complex numbers, so

they are subtraction will also be complex numbers.

Because we are assuming this by induction this has a complex zero and that is same thing as

this, so this is in complex number, this is real number and this is nonzero, therefore I can

conclude  the  product  ai  aj  belongs  to  the  complete  numbers.  When  this  belongs  to  the

complete number, c is real number, therefore I can conclude immediately  ai+a j  is also

complex number. 



(Refer Slide Time: 34:54) 

 

So, I got, I got a pair, so what did we conclude, the conclusion is there exists a pair i, j with 1

less equal to i less than j less equal to b, such that  ai+a j  and  ai a j ,  both these are

complete  numbers.  And  from  here  I  want  to  conclude  now  both  individually  they  are

complete  numbers.  That  is  because  now  look  at  the  quadratic  equation,

X2
−(ai+a j)X+ai a j ,  this  is  a  polynomial  with complex coefficients.  And degree is  2,

degree 2 and we know how to solve this. 

The roots are, zeros are precisely what? Zeros are precisely, what formula, that is -b, so what

are  the  zeros,  they  are  precisely  ai a j ,  ai  and  a j  and  we  know  how  to  solve

quadratic equations over c. That will just amount to say that if you can solve, so the zeros,

our formula is - the coefficient of b, that is ai+a j±√b2 , that is ai+a j  whole square - 4,

this is  ai a j . But I know this is a complex number, this is a complex number, this is a

complex number, so inside is a complex number and square root is also complex number

because we check that for every complex numbers are the square root is also a complex

number.

So this is complex, this is also complex number, so this is a complex number. So, therefore

but there actually this, the zeros are, when you simplify this formula, 0 is precisely this, zeros

are ai and aj, so this is ai or aj and so therefore they are complex numbers. And therefore we

are  done,  because  we  have  actually  checked  that  2  of  them are  complex  numbers.  Not

surprising because we had reduced to the case where the polynomial has real coefficients. So



with  this  now  we  have  proved  that  fundamental  theorem  of  algebra,  which  was  very

important and as you see this proof has used the analysis least possible.

Obviously you cannot all the way avoid completely analysis but this is, this avoids many

other, other, this is much, in my opinion, this proof is much simpler than any other proof and

let me say that this proof is actually based on the ideas of Lagrange. So, with this I will stop

this and we will continue our study of zeros of the polynomials on one side, on the other side

the groups and especially Galoi's groups of the field extinctions. So, given polynomials, we

will construct fields and given fields we will talk about groups and then this interplay we will

make it more and more intimater, that is the whole goal of this course. Okay, thank you.


