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So, in the last lecture we saw that every field has an algebraic closure. Now the question is

how many. So now we prove sort of uniqueness, it is not unique but it is unique up to nK

isomorphism. So let  me state it precisely,  then really  prove it.  So theorem, this will also

Steinitz, let K be a field, then, 1 let E over K be a field extension with E algebraically closed.

In the last lecture we indicated that how to construct such E. Okay. Then, let L over K be an

algebraic extension, may not be finite, then there exists an K embedding from L to E σ .

K embedding means, see, this is an algebraic extension, this is contained here, so we can

extend this, this  σ  is K Linear and embedding means it is a field homeomorphism. So

such an embedding exists for every algebraic extension, that is Part-1. 
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And part 2 we say that, if E and E’  are two algebra closures of K, then there exists a K

isomorphism σ  from E to E’ , that means this computes with its K Linear and it is a

field homeomorphism. So that means this σ  is indeed an element in HomK−alg(E ,E
’
)  .

This is K algebra homeomorphism from E to E’ , which is also, which is K Linear, that is

K algebra homeomorphism. So that means that E and E’  are unique up to this K algebra

your isomorphism. So let us prove this.
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So proof, again proof will involve Zorn's lemma. So, proof. All the theorems, one cannot

prove without using the Zorn's lemma. So, consider the set M, this is the set M of all pairs of



M, σ  such that M is an intermediary field of L and K and the σ  is the K embedding

from M to E, K embedding. That is it is an element in HomK−alg(M , E) , this. This is our

set M. Remember, what we want to do is a following. Let me draw a diagram. L over K, this

is the given algebraic extension and we have given E, E is given here, E is contain this K is a

field extension of case and this E is algebraically closed, that is what we have given and we

want  to  extend  it  here,  this  σ  we  are  looking  for,  K  algebra  homeomorphism or  K

embedding.

This  is  what  we are  looking for.  So now what  we have  done is,  we have  taken all  the

intermediary fields M which have the extension and we are going to maximise it and we will

prove  that  this  process  will  reach  M.  And  precisely  that  means  choosing  the  maximal

element. And choosing a maximal element one needs to apply Zorn's lemma and one has to

have an order. And we have to check that order set is inductively ordered. That means every

chain has an upper bound there. 

And one notes that there are maximal elements and those maximal elements will give as the

required thing. This also shows that this process is not very natural and this may not, the

embedding may not be unique, there may be many embeddings, that is it. Let us now justify

that we can apply Zorn's lemma to this set M, that we have defined. So we need an order 1st. 
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So, define, so they set M is ordered by the following order. So take 2 elements in M, one is

M, σ , the other is M ’  σ  and then we say that this is bigger equal to this, if and only

if, this is the definition, this is if and only if, M is contained in M ’  and σ
' is restricted to



M equal to σ . So, with this we need to check now that this M is inductively ordered. So

1st of all  this M is nonempty because this K, there is natural inclusion iota from K to L

because this L is given to be extension of K, so there is a natural inclusion.

So this pair belongs to this M. Therefore M is nonempty and inductively ordered means that

is every chain, what is the chain, chain is a totally ordered subset, has an upper bound in M,

this is what we want to check. Alright, so let us that, let us call that chain to be C, C is the

pairs  (M i ,σ i) ,  i∈I , so this I is totally ordered and we want to check that it has an

upper bound. 
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And obviously what we will claim is you take the union of these M i 's, i in I, let us call this

as L0 . So 1st of all note that this is a field, this is a subfield of, so note that L0  is a field

and L0  is in between K contained in L0  contained in L. So, field is clear because if you

take to elements here, both of them will lie in some M i , one will lie in M i , the other

will lie in M j  but I is totally ordered, therefore I can assume both lie in the same but all

these M i 's there who is a field, therefore this is a field, this is clear.

Another thing is we also can extend that, we can extend that σ  is, we will define σ0

from L to E, L0  to E. How do we define this? Take any x∈L0  and choose i so that X

belongs to M i , i∈I  and now define, we will be given this σi . So define σ0( x)  to

be equal to  σi(x ) . But this will not depend on the choice of this y because this is the

chain.  That  means (  M i ,  σi  )  and if  you were to arrange  M j , j∈J  and as you



assume this i is totally ordered, so j is bigger, then  (M j ,σ j) , this is contained here and

then therefore this is also equal to σ j .

So it is well-defined, it is no problem. And remember everywhere we are choosing that this is

a chain. So therefore anyway, we have therefore got hold of this element (L0 ,σ0) , this is

again in M and which is clearly an upper bound, upper bound for the chain ( M i , σi ).

And now we will, obviously we will claim that this L0  equal to L, we want to claim this

equality here, this is what we will prove.
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Alright, so suppose on the contrary  L0  is not full I, full L. Suppose  L0  is properly

contained in L. Then what can we do, we can choose an element which is not in L0  and

which is in L. So choose x∈L  which is not in L0  and remember this L is L over K is

algebraic. That is given to us and this x is given there in L. So minimal polynomial of x over

K makes sense, this is minimal polynomial of x over K, this is not over K, over L0 . This is

a polynomial in  L0[X ] , x over K is algebraic, therefore L over  L0  is also algebraic

because  L0  contains  K  and  therefore  minimal  polynomial  makes  sense  and  it  is  a

polynomial in L0 , it is a polynomial in L0[X ] .

So look here, this is L, this is L0[X ] , this simple extension of L0  which is contained in

L, this is  L0  here, and this is K here and we have an embedding here to E. And we are

looking for a contradiction now, this is proper. Anyways, so therefore this polynomial is in



L0  over K and we have L0  to E there is an extension, this is σ0 . So therefore this

L0 , this is, this is, E is algebraically closed and this L0  is contained in this, so therefore

I can always find, if I take the image of this, if I look at  μx , L0
 and take, + σ  to this,

σ0  to this, so you get a polynomial in E, this is a polynomial in E[X ] .

And E is ultimately closed, therefore this polynomial will have 0, so therefore I can always

extend. So this polynomial has a zero, so y is a zero of  σ 0(μx , L0
) . So I have these, the

image of this. So, let me identify, you do not have to keep saying this one, or you have this

σ0  of L, this is a subfield here which is the image of this and to this I adjoint y, so that

these 2 films are isomorphic,  that  is just  given by this  σ0 ,  this  is  a subfield here.  So

therefore if I take this, this composition, this, that will give me an extension, that will give me

an embedding, let us call this embedding as, this is an embedding, so let us call this as rho.
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So therefore I got an embedding  ρ  from  L0[x ] , this field to E. And obviously rho

restricted to  L0  is given  σ0 . Therefore, what we check, what we check that that this

pair (L0 ,σ 0) , this pair and (L0[ x] ,ρ) , this pair obviously, this is strictly bigger, this is

strictly  bigger,  that  this  is  also  in  M  but  this  was  the  maximal  element  in  M.  So  a

contradiction to the maximality (L0 ,σ 0) . So this proves that that L0  has to be L, this is

K, this, and then that σ0  is an embedding in E.

So therefore we have an embedding of, this is K embedding, so there is a K embedding, so

that this diagram is commutative. So, that proves the 1st part, so this proves 1. Call it, so now

we have to prove 2, I just wanted to show you 2 is, if E and E’  are two algebraic closures

of  K,  then  there  exists  a  K  isomorphism  such  that  E  to  E’ ,  this  is  the  K  algebra,

isomorphism from E to E’ . All right.
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So we have given 2 algebra closures E over K and E’  over K, they are algebraic closures

of K. So that means 2 things, that is E over K is algebraic and E is algebraically closed, this

means algebraic closure. So similarly for E’ . So, the Part-1 shows that I am going to apply

to E. So applying 1 to algebraic extension E over K. Now I am looking at E over K has

algebraic extension and I am looking at  E’  as algebraically closed field and I want to

apply 1. 

So, that will tell us E here, this is algebraic extension of K and this is algebraic closure, so

this is algebraically closed field, algebraically closed, so I can extend this to embedding σ

,  K  embedding.  This  is  by  Part-1,  now  I  want  to  show  that  this  σ  is  indeed  an

isomorphism. This is an embedding and now therefore E, if I take the algebraic closure of, so

take, so this, take let, so the algebraic closure of K, this way of E, of K in E’ , I have this.

So let me write on the next page.
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So we have this diagram, so E, E to σ , E to E’ , we have the σ , I want to show the

σ  is an isomorphism. So, look at  σ  of E. See, it is a field, therefore I only have to

check it is surjective. So this is the image of σ  and this one, now σ(E)  is algebraically

closed, E is algebraically closed, therefore Sigma E is also algebraically closed. This is also

algebraically closed and all this contains K, this is algebraic extension. So if I take this field

and take its algebraic closure in E’ , so algebraic closure of σ(E)  in E’ . 

Algebraic closure of σ(E)  is also algebraically closed and this is contained in a prime, it

contains K, so but this is algebraic closure, so that will show that this is equality here. So

therefore we note that Sigma E is E’ . That means this σ  is surjective and that means it

is a K isomorphism, that is what we wanted to prove. 
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Alright, now I want to make 2 remarks, 2 very important remarks, one this K isomorphism, K

isomorphism  σ  in  1,  remember  that  is  L  over  K  algebraic,  is  algebraic  and  this  is

algebraically closed field, E is algebraically closed. Then we have extended this here, this

σ  which is a K embedding, this is not unique in general, as I remarked earlier also. So

therefore in 2 also, the K isomorphism in 2, that is also not unique. Because all this we got by

using Zorn's lemma and by choosing a maximal element and partially ordered set may have

more than one maximal element.

So therefore, it is not unique in general, unless, unless E equal to K. Anyway, but if you do

not have this, that means if you feel is not algebraically closed, then the algebraic closures,

algebraic closures of K are not unique in general, unless E, unless K is algebraically closed.

So, therefore we cannot say the, we cannot set the, we are not allowed to say the. So we will

keep saying an algebraic closure, that is one remark. This is very very important because one

may get a feeling that these are unique.
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Okay, the next remark, remark 2, if I want to study algebraic, so study of algebraic extensions

of a field we study, this study, we will reduce it to, if I choose, E over K algebraic closure of

K, an algebraic closure, so choose an algebraic closure of K, that we know it exists now and

then this, therefore F of intermediary field of E over K makes sense. So these are, this is a set

of  intermediary  fields,  subfields  in  between E and K. So if  you want to  study algebraic

extension of this, it is enough to study this.

Study of algebraic extension of a field K can be reduced to the study of the set E over K

intermediary subfields of E over K where we have chosen algebraic closure of K. So, this I

have not used earlier but this is very important in the study of this. Okay, now the next one is,

so I would rather stop here and prepare for proving that the field of complex numbers is

algebraically  closed.  And  for  that  proof  I  am going to  use  the  fundamental  theorem on

symmetric polynomials, this I will do it in the next lecture. Thank you.


