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Lecture 51
Existence of Algebraic Closure

In the last lectures we have been studying field extensions, algebraically field extensions and

sometimes  in  between  also  I  have  used  the  words  like  algebraically  closed  or  algebraic

closure  of  a  field,  etc.  etc.  now we will  prove  the  existence  of  algebraic  closure  for  an

arbitrary field and also we will prove long pending statement which I have been saying that is

the  fundamental  theorem  of  algebra  which  says  that  the  field  of  complex  numbers  is

algebraically closed alright.
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So first let me prove the existence of the algebraic closure, so this today’s lecture is about the

algebraic  closure  alright  so  recall  that  field  E  is  called  algebraically  closed  if  every

polynomial f with co-efficients in E has a zero in E then we call the field to be algebraically

closed and we will  prove that  ℂ ,  this  is  what  we will  prove,  this  is  the fundamental

theorem of algebra this is the field of, the field  ℂ  of complex numbers is algebraically

closed. 

This  is  also  known  as  theorem  of  D'Alembert-Gauss,  D’Alembert  stated  this  in  1746,

D’Alembert was a French mathematician and Gauss was German as one knows, this is was

proved in 1800 approximately 1801, that is Gauss and Gauss’s proof was considered first

complete correct proof of this theorem which he did in approximately 1800 but there are



other proofs also today and the proof I am going to give is will be based on the ideas of

Lagrange which was before Gauss.
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Okay so let us prove, I want to prove that every field has an algebraic closure but before that

let us observe some easy facts so let E be a field so E is algebraically closed that means every

polynomial with co-efficients in E has zero in E, this is equivalent to saying every irreducible

polynomial in E[X ]  has a zero in E because we know every polynomial is a product of

irreducible polynomials so if an irreducible factor is zero then the product will have also zero

the same zero.

So I am noting this side because I will use this with reference further so this is also equivalent

to E as no algebraic extension, algebraic field extension of degree strictly bigger than 1, no

algebraic extension of E as degree more than 1 so that means the only algebraically extension

of E is E itself also equivalent to saying that every irreducible polynomial in  E[X ]  is

linear, linear polynomials are the only polynomials okay.

Also equivalent  to  saying that  every  polynomial  in  E[X ]  splits  into  linear  factors  in

E[X ] , this is also because every polynomial splits into irreducible one and irreducible

polynomials are linear therefore all these equivalences are just nearly a re-statement of the

definition, so I will use them whenever there is a possibility and I will not explicitly say why

it is so.
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Now another easy preposition,  so let  E over  K be a field extension with E algebraically

closed then and let us denote E alg, this is by definition, all those elements in E, y in E such

that y is algebraic over K so this is what we call it the algebraic closure of K in E, we have

seen that the algebraic closure is a sub-field and now this says if E was algebraically closed

then the assertion says that E algebraic, this alg is algebraically closed field and obviously E

alg over K, K is an algebraic extension.

This is clear because these are precisely all algebraic elements over K so this is algebraic

extension is clear I want to show that E is algebraically closed field and this is because E is

algebraically close okay so let us prove this, so proof, what do we want to show?
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We want to show that every polynomial so we want to show that, so to show that if f is an

polynomial with co-efficients in this E alg, this is an irreducible polynomial then I want to

show that  has  then f  has  a  zero in  E alg,  this  is  what  I  want  to  show, well  but f  is  an

polynomial in E alg, coefficients are in E alg that means the co-efficients of f are algebraic

elements over K because this is a sub-field of E is clearly contained in E[X ] .

So f is a polynomial in E[X ] , E is algebraically closed, f may or may not be irreducible in

E[X ]  because we are taking over a bigger field but in any case this polynomial will have

a zero in E because E is algebraically closed then f has a zero in E since E is algebraically

closed and let us call that zero, f has a zero so  f ( y)  is 0 for some  y∈E , I want to

actually check that this y lies in E alg. So to show that we will show that y is in E alg that

means I want to show that y is actually algebraic over K, so this is to show.
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Well but what do we know? We know the following thing, K is here, E alg is here, E is here

and then this I want to adjoin that y which is here, now this y is an element in E, y was an

element here and y satisfies the polynomial f, so note that this extension is algebraic but

definition of this and this extension is also algebraic because this y satisfies the polynomial

f ( y) , this f was polynomial in E has co-efficients in this.

So therefore this extension is algebraic,  this extension is algebraic,  therefore composite is

algebraic, the transitivity of algebraic elements so this extension is algebraic, in particular y is

algebraic over K, but this means so that is y belong to E alg by definition of E alg but then if

Y belong to E alg and this f ( y) , so that means there is, so this means this f which was an



irreducible polynomial in E alg, this was irreducible in E alg, so this has to be a multiple of, a

minimal polynomial of y over K, some constant a, a belonging to some constant, where it is,

it does not matter.

So therefore this f has a zero, so in particular F has a zero y which is also in E alg so that

means we have proved that every irreducible polynomial in E alg X has a zero in E alg so that

therefore so this shows that so therefore E alg is algebraically closed this is what it proved, so

remember what we have proved is, if you have an algebraically closed field which is an

extension of a field, then the algebraic closure of this field in that is also algebraically closed,

typical situation is the following.
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So  example,  so  we  have  ℚ  here  and  ℚ  is  a  sub-field  of  complex  numbers  and

fundamental theorem of algebra FTA says that this is algebraically closed, we have not yet

proved but we will  prove,  this  is  algebraically  closed and now we take the algebraically

closure of  ℚ⊆ℂ  that is also denoted by ℚ  alg this is also standard notation is  ℚ

which is by definition all those complex numbers z∈ℂ  such that z is algebraic over ℚ ,

this is a field, it is called field of algebraic numbers and above preposition says that this is

ℚ  bar  is  algebraically  closed  by  preposition  so  because  ℂ  is  algebraically  closed

alright.
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So let us continue, now I want to prove that every field has an algebraic closure, so first let us

define properly, what is an algebraic closure so definition, let K be a field, a field extension

an algebraic closure of K is a field extension E over K such that two conditions, 1 is E over K

is algebraic that means every element of E is algebraic over K and second e is algebraically

closed.

So this means in some sense this is the smallest algebraically closed field which contains K

but this is more precise where smallest means what, that is little bit loose but this is proper

now we want to show that given any field K there is a field extension such that E is algebraic

and E is algebraic over K and E is algebraically closed.
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So these theorems were proved by, so these are called Steinitz Ernst theorems and he proved

this theorems in approximately in 1910 where the rigorous algebra started or rigorous theory

of fields was first done properly by Steinitz in 1910, Steinitz was a student of Kronecker and

also one of his teachers was Frobenius, so we will prove this precise theorems and these was

the first time was used the main ingredient in the proof was little bit abstract that is why this

theorems  were  proved  only  after  the  set  theory  became  more  prominent  and  transfinite

methods of set theory was introduced by Cantor and Steinitz used them.

Steinitz used them in the proofs and also worth noting that Steinitz used Axiom of Choice

because but I am going to use Zorn’s lemma so they say in proof but instead of Axiom of

Choice,  I am going to use Zorn’s lemma which is more comfortable,  Zorn’s lemma was

proved in 1940s, Zorn was a student of Artin alright so let us state the theorem.
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So this is the theorem we are going to prove, this is Steinitz, 1910, so every field K has an

algebraic closure, proof, as I said the same proof but this is arrangement form Emil Artin and

what we will use is, we will use so called Zorn’s lemma, Zorn’s lemma will be used in this

proof, so we know Zorn’s lemma which is equivalent to Axiom of Choice, I mean I am not

going to go to these proofs, this is just for the side comments and how will it be used?

It will be used in the form that, let me recall you that we are going to use this fact, this is

known as Krull’s theorem which says that let A be a commutative ring and remember that our

ring has always identity but I will stress it here with identity and a be an ideal in the ring A

then there exists a maximal ideal m in A which contains with a is contained in m, so I will



use this Krull's theorem which uses Zorn’s lemma and therefore I said in the proof of this

theorem we will use Zorn’s lemma and remember in this Krull's theorem commutative is very

important and the ring with identity is also very important alright.
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So let us continue the proof, we want to construct am algebraic closure for a given field

alright so what do we do, first I will construct a ring, so what we want to prove, so I want to

do that for every irreducible polynomial  f ∈K [X ] , I want to associate, we associate an

indeterminate which I will denote by X f  over K so that means what, so and the set of all

irreducible  polynomials  I  am going to  to  denote  by  Irr(K [X ]) ,  this  is  the  set  of  all

irreducible polynomials in K [X ] .

So  they  are  many,  infinitely  many,  in  fact  if  your  field  is  uncountable  this  also  will  be

unaccountably many and so on and I am going to consider a ring R which is the polynomial

ring over K in all these indeterminates,  X f  where f is varying in this set of irreducible

polynomials in K [X ] , so this is a polynomial ring in infinitely many variables, this is a

polynomial ring in so many variables, they are many many variables.

So we are going to consider this and also I will consider ideal A in this ring R which is

generated  by  this  elements,  so  this  is  ideally  generated  by  f  and  you  write  instead  of

X , X f , f (X f )  where X is varying in irreducible polynomials of  K [X ] , so this is an

ideal generated by this polynomials,  so that means all  R linear combinations of these are

contained there right, this is ideal generated by this set is precisely all R linear combinations



of this polynomials f evaluated at X f  and first thing is now we claim that this is a proper

ideal.
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Because I want to choose a maximal ideal in this ring so maximal ideal which contains all

this polynomials so I want to claim that this ideal A is, so we claim that this idea a is a proper

ideal, so suppose a contrary, suppose not that means what, a is R but that means that is 1 will

belong to a but that means that is I will have 1 can be written as a combination of R linear

combination of finitely many polynomials so those are f i(X f i) , i is from 1 to r where gi’s

are arbitrary polynomials in R and these are the generators of this ideal a.

And I am looking for a contradiction, these f i ’s were some irreducible polynomials, now I

am looking for a contradiction, so the contradiction will come because now I am going to use

Kronecker’s theorem, Kronecker’s theorem says that if I have a polynomial over arbitrary

field then that polynomial splits if I enlarge the field then that polynomial splits completely

into that field, enlarged field.

So Kronecker’s theorem I am going to apply it to the polynomial f which is the product of

these finitely many  f i ’s so  f 1 ,…, f r ,  this is the polynomial  in  K [X ]  and I will

assume for each f i , i is from 1 to r, there is a field L finite field extension L over K such

that f i(ai)=0  with ai∈L  and this is true for all i, 1 to r, this is by Kronecker’s theorem,

now once I have that we have this equation, this equation I am going to substitute in that

equation.
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So substitute X i  equal to these ai  this is for i equal to 1 to r and all other variables, all

other Xh  put them to 0 for all other h∈Irr(K [X ]) , so what we will get, I get 1 here so

we will get 1 equal to summation i equal to 1 to r, gi  evaluated at this a1 ,…,ar  and the

remaining variables are putting zeroes and  f i  all these variables we are putting  ai ’s.

But this that is 0, therefore all together 1 will be equal to 0 which is a contradiction because

which is a contradiction. 

So therefore this proves that the ideal a is cannot be unit ideal so it is a proper ideal and hence

there exists a maximal ideal m in R with a contained in m and why maximal, because we

want to construct a field so therefore we have the situation now is this.
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K to R with a natural infusion and R to the residue map, R to 
R

⟨m⟩
, this is a field and this

is even and therefore I get even and field extension of K so K is here that we call it E0  and

I  have  extended  this  to  E1  and  I  will  repeat  this  process,  what  process,  I  take  all

irreducible polynomials and adjoin and take the polynomial ring and consider the ideal and so

on, so this is embedded in E2 , etc. and keep doing this, this is embedded in Ei , this is

embedded in Ei+1 , so I have the chain of fields and with what property?

With the property that every irreducible polynomial in Ei[X ]  has a zero in Ei+1 , every,

so here this is E1  and if you take an irreducible polynomial f here we have that variable

X f  here and this has a zero here namely image of this X f , small x f  this x f  is a

zero of f in E1 , so that is how we have chosen this maximal ideal which contain all these

generators f (x f )  and this goes to zero here therefore this property and this we are doing it

for every step.

So and now I want say, we want to claim that I take the union now, E is a union of all these i

big or equal to 0  Ei , this is a field and we want to check that this is E is algebraically

closed and obviously each this stays is algebraic and therefore E is and E is algebraic over K

okay so how do you check? First of all it is a field, why? Because all these Ei ’s are field

and  therefore  we  can  define  addition  and  multiplication  and  those  will  be  well  defined

because it  is a chain,  so it  becomes a field and now I have to show that it  is obviously

algebraic over K because each stage is algebraic over K and algebraic is transitive.
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Now we only have to justify that E is algebraically closed but that means what we want to

check that, so to check that, to show that if I have a polynomial f in E[X ]  irreducible then

I should prove that it  has a zero in E but I know this f is one polynomial so it will have

involve only finitely meaning co-efficients so therefore there exists an index i such that f

actually has co-efficients in Ei  and if it is irreducible here, it will also be irreducible here

and therefore by construction f has a zero in Ei+1  but Ei+1  is contained in E, so that is

it.

So this proves that E is algebraically closed so we have finished the proof of the Steinitz

Theorem which say that every field has an algebraic  closure, now I want to remark here

which I do not know whether it will be proved in this course but it is very very important, the

above process actually should stop at 1 only so note that one can prove that already E1  is

algebraically closed, this was remarked by Speiser, which if I have time I would comment it

when we have the appropriate machinery.

Okay with this I will stop and continue in the next uniqueness of the algebraic closure, so we

will have to state it precisely and prove that it is unique, unique upto K-isomorphism this is

what we will do it after the break, thank you. 


