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In the last lecture we began our study with the polynomials, more precisely polynomials over a

commutative ring. And the notation we have used is the set of polynomials with coefficients in

the ring A is denoted by A[X]. This is, and we saw again that it is a ring and this ring is called a

polynomial  ring  over  A.  And  A  was  commutative  ring.  And  we  saw  how  to  add  two

polynomials, how to multiply two polynomials. And with those binary operations, this is again a

commutative  ring  with  multiplicative  identity  and  multiplicative  identity  is  the  constant

polynomial one.

So if F is a polynomial with coefficients in A, so F we can write it as a0+a1 X+ ...+an X
n . This

n is  the degree F,  where a n is the last  non-zero coefficient.  This a n is  also called leading

coefficient of F. And we call F monic if an  is a unit in A. Now let me recall little bit. Since I

said unit, let me recall few facts about this. So in general, this we will need it later also. So I

would prefer that we get acquainted from the beginning.
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So whenever I have a ring A, remember ring for us is always commutative, so I will not keep

saying all. Throughout this course, we will consider commutative rings. That means what? That

means  (A,+)  is  an  Abelian  group  and  (A,.)  is  monoid.  And  plus  and  multiplication  are

compatible. That means distributive laws, they satisfy distributive laws. So the neutral element

with respect to addition is 0 and neutral element with respect to multiplication is 1. That is how

we have noted.

So I am going to make efforts to write 0A  and 1A . So this means they are identity element

with the respective binary operations in A. Now this monoid, A dot, see this is an Abelian group,

so every element is an inverse. So in this monoid, some elements are invertible, some elements

are not invertible. Now what is invertible means? So more generally, when, if (M,.) is a monoid,

monoid  means  it  is  a  binary  operation,  associative  binary  operation  and there  is  an  neutral

element with respect to that binary operation. Then I will denote by M x , all elements x of M

such that x is invertible in M.
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What does invertible mean? So that means, so invertible means an element x in M is invertible if

there exist an element y in M such that x . y= y . x=e . So this e is the neutral element in M.

Such an element is called a neutral invertible element in M. And the set of invertible elements is

denoted by M x . So it is clear that this M cross is a subgroup of M. So what does that mean?

That means the binary, the same binary operation of M induce a binary operation on this set

M x . And with respect to that binary operation it is a group. So that is obvious because, so

what do I have to check for this? We have to check that the neutral element belong to  M x

which is clear. Also, if x is in M x , then the inverse is the unique element that y. See, this y

unique and then y is called the inverse of M. So then the inverse of, so that this y is called, y is

unique and it is denoted by x−1 .

So this  is  in  the multiplicative  notation.  When you are using an  additive  notation,  then  the

inverse will be denoted by -x. So this is also in M x . Two elements, if x and y are in M x ,

then x, y is also in M cross. So what will be the inverse of xy? x−1 y−1  will be, inverse of xy

will be precisely xyy−1 x−1
=e . So this will be the inverse of this, so that check this. This is

obvious. This is also clear. So this is a subgroup of M x .
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So this, so how do we test some ring is a field or not? So now it has become easier to state A is a

field  if  and  only  if  this  A x  ,  the  unit  group  of,  this  is  called  a  unit  group  of  A  is

(A , .)x=A ∖{0} . So A, dot and then the cross. This monoid, and take the cross of that.
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Just let me, I want to just say it here that this M cross is called the unit group of M. So when you

have a ring, you have two binary operations, addition and multiplication. And with respect to

addition, it is already Abelian group, so we do not have to worry, every element has invertible.

With  respect  to  multiplication  is  the  only  complication.  Because  if  the  elements  are  not



invertible, we cannot cancel them easily. For example, in ring of integers only two elements have

multiplicative inverses, { ±1 }.
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So it  is  very  important  to  study  a  monoid,  multiplicative  monoid  of  the  ring  and  take  the

invertible elements in that and that is a subgroup under multiplication of M. This subgroup is

called unit group of A. So when it is a field, this unit group is a maximum possible. That means

this one has to be equal to all non-zero elements, then only it is a field. Because this means that

every non-zero element is invertible.

And remember that 0, you cannot hope to have inverse as 0. 0 is, it is additive identity, so you

cannot hope to have inverse. So these are the maximum possible. So for example, let us see some

examples. For example, if you take ring of integers, if I take ring of integers and take the unit

group, so I do not have to assume now, I do not have to write in the notation that I am talking

about a unit group with respect to multiplication. Because with respect to addition, everybody is

invertible, so the question does not arise. So these are precisely { ±1 }.

It is a nice exercise for you to find out for any n, natural number n, what is the unit group. ℤn
x

. These are precisely all those remainders. So all those a  such that  ab  is  1  . But we

will easily see that these are precisely all those, these we can identify this side, all those a bar

such that gcd of a and n is 1. I want you to check this. So therefore, order of the unit group in the



first example is 2. Order of this unit group order, that is cardinality of ℤn
x , these are precisely

all those integers between 0 and n, which are relatively prime to n.

And you know that is precisely  ϕ(n) . This phi of n is called,  ϕ  is called Euler's totient

function. So field, to study equations, solving equations over an arbitrary ring is as I have shown

you in last lecture that when there are elements in the ring which are not invertible with respect

to multiplication, they cause lot of problem because we cannot cancel immediately. Therefore we

are going to concentrate only when the coefficient ring is a field. And last time I gave some

examples of field and I will give you still more examples. But today I will continue our study of

polynomials still more.
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So let me formally also define when you say integral domain, that means it is a commutative ring

and satisfying a property that whenever I have two non-zero elements in the ring A; a, b, both

non-zero, then their product should be non-zero. So this means also, this is also said free from

zero  divisors.  Then you call  it  an  integral  domain.  That  you can  test  it  again  by  using  the

multiplicative monoid very easily.

This  is  equivalent  to  saying,  if  you take  A ∖{0} ,  this  is  a  submonoid  of  a  multiplicative

monoid (A,.). Under the multiplication it is a submonoid. So that is because if I have two non-

zero elements, their product is again here. So it is a closure property that is very important. In

general, this is not a submonoid. For example, if you take ℤ4  ={ 0 ,1,2 ,3 }.



Because these are precisely the remainders, possible remainders after dividing by 4. And in this

22=0 . So when I remove  0 from ℤ4  , it is not closed under the multiplication. Therefore,

ℤ4∖{0}  is not a submonoid, not submonoid of ( ℤ4 ,.) .
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And then you can write down many examples like this. So remember our example. We are going

to concentrate  on, I will  have a field K, K is  a field and we will  take all  polynomials  with

coefficients in K, that is K[X]. And this is clearly an integral domain. So to check this, what do I

have to check? If I have two non-zero polynomials, both non-zero, then the product also should

be non-zero. This is what we need to check to justify that it is an integral domain.

But that is because you see here F is non-zero polynomial, so it has a leading coefficient, the

degree  is  n,  degree may be 0.  The constant  polynomials  precisely  have degree 0.  G is  also

looking like this:  b0+...+bm X
m ,  where m is the degree of G. And this  an  is a leading

coefficient, lc of F. And this _ m is lc of G. And what will be our multiplication will tell us? That

F times G, the top degree term will be precisely anbmX
n+m + the lower degree terms.

So this is the highest degree term. So leading coefficient of F times G is precisely a n times b m.

And because we are in a field, K is a field, if I take two non-zero elements, this is non-zero, this

is also non-zero, two non-zero elements, then the product cannot be 0, because we are in a field.

Fields are integral domains. So therefore, this cannot happen. In fact, we do not even need, for



this we do not even need K to be field. It is enough that it is an integral domain, that is what we

have used. So in fact, we know A integral domain. Then what we have proved is A[X] is also

integral domain. Then what about the, in this case what about the unit group? That is also very

easy now.
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So just let us check that if A integral domain, then what will be the, what is A polynomial X and

then the unit group A [X ]
x ? That means what? What is this set? This set is precisely all those

polynomials with coefficients in A such that this F is a unit in A[X]. That means there exists G in

X such that F times G equal to the multiplicative identity in this polynomial ring which is the

constant polynomial 1. And which is, we will not write this. No need to write this. So I will write

in a bracket that is also G times F.

Because our operations are commutative, so we do not have to bother about this. So all those

polynomial, we want to know what are all polynomials with coefficients in A for which there is

another polynomial G so that F times G is 1. But it is clear that this is precisely, this condition

will force what? If I compare the degrees, degree of F times G equal to degree of 1 which is 0,

degree of 1 is 0, it is a constant polynomial.

On the other hand, we know that degree of the product is degree F + degree G, because the

leading coefficient  of this  product polynomial  is precisely the leading coefficient  of this.  So

therefore,  this  is  called  the  degree  formula.  And  that  equality  happens  because  of  our



assumption, A is an integral domain. So therefore, but then which, if the degrees are 0, then that

means F is also, should be constant polynomial. Not only constant but the non-zero constant. So

therefore, this is precisely, set is precisely A x .

So this will mean, this means F is non-zero constant. F is in A and F is non-zero. So therefore,

the unit group will not change if you take polynomials. So that is same as unit group of A. And

we will, as the course progresses, you will see the information which comes from unit group is

very very important to deduce many consequences for the good results. Now the most important

thing that we have been using in our school days, I want to recall couple of things about that.
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So for example, in the ring ℤ  of integers I have defined you what are the prime numbers. P is

the set of prime numbers and P we are considering a subset of ℕ . That simply means, when

we say prime number, that means by definition we assume them they are positive. So this is the

set of prime numbers. And we have seen that they are infinitely many. This set is infinite, that we

have seen Euclid’s proof that there are infinitely many prime numbers.

We know that, so what was the definition of prime number? The only divisors are, so a number

n, positive number n, so that is a natural number n is called prime if the only divisors of n are 1

and n. And when I say divisors, we should better write in ℕ . This is very important writing

like this because you see - n is also divisor of n if you allow me to go divisors in ℤ . Or if you



allow me, if I go in rational numbers, then anybody will divide n, because I am allowed to do the

denominators. 1 by n will also divide.

So therefore it is very important to say where you are taking the divisors. So that is a definition

of a prime number. This was told to us in a school. This is not very, this is correct, this is not

wrong definition, but it is not good for the future opening. It is not more general definition. So

soon I will define it more general than the definition this which will work in general ring. This

works only in the ℤ . And not only in ℤ , it only works in a positive.
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So for example, if I want to say, let us take our concrete example of this, this is my ring now,

K[X]. K is a field. This is what our main interest in this course. And K is an arbitrary field, may

not be finite, may not be ℚ , may not be ℝ , maybe ℂ  or arbitrary field. Then when do I

say a polynomial F is a prime polynomial? When do I say F is prime? If, now I should also

define like that, about what are the divisors but now I have to say divisors here.

If the only divisors of F in K[X] are of the form a times F, where a varies in a non-zero element

in the field. So that is  K x . Remember K x  because K is a field. K x  is what? K x   is

all  non-zero elements.  That  is,  and why does it  come from? Why does it  not appear in this

definition of ℤ ?
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It  does  not  appear  here  because  we  have  banned  it.  Because  you  see  what  is  ℤ
x  ;

ℤ
x
={±1} . And we made it shortcut here by taking elements only in  ℕ . So that -1 got

canceled here. -1 was rejected because of this assumption. So it is only 1 and n.
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So more generally, this is, in this case this is exactly are the prime elements. This is also not very

satisfactory. I will show as we progress. This K may not be field always. So we should really

have a definition in, when arbitrary A is arbitrary commutative ring, then what is the definition

of, so what is the definition of a prime element? I am just raising this question here so that next

time you will be better prepared. You please think about it. What should be the right definition of

a prime element in general in a ring? Okay, so we will continue after the break.


