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Alright now we after a digression on the signature of a permutation etc. now we come to the

proof of the lemma I stated, so the lemma we wanted to prove was so this was the lemma that

for every permutation σ∈Sn , if I permute the Vandermonde determinant variables that is

if I write V (X σ1,…, Xσ n) , what I get is sign of σ  times the Vandermonde determinant.

So this Vandermonde determinant is not a invariant under all permutations but it is invariant

under only at the permutations where sign is 1 that is advantage, so proof, so what was the

Vandermonde determinant was by definition was this, V (X1 ,…, Xn) , this is the product,

product is running over this and this is i⩽ j , X j−X i  and I wanted to apply σ  to this

variables, I want to permute the variables according to the σ  and so the proof I am going

to give, this is a proof due to Jacobi that was in 1841.

Because  Jacobi  studied  what  happens  to  the  Vandermonde  when  you  permute  the

transpositions,  when you permute,  when you apply  a  transposition  to  the  variables  what

happens to the Vandermonde determinant, Jacobi study that, so that means so it is enough to

prove that, to prove this formula for transpositions because every we saw in digression that



every  permutation  is  a  product  of  disjoints  cycles  and  every  cycle  is  a  product  of

transpositions. 

I am not saying disjoint transpositions but transpositions so all together every permutation is

a product of transpositions and the sign is a homomorphism so sign commutes whether I

compose the transpositions, apply the sign or take the signature and multiply that so therefore

it is enough to prove for σ  equal to τ  where τ  is a transposition.
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Because remember if  σ  is a product of r transpositions,  σ=τ1 ... τr , these are, tau i’s

are transpositions then sign of σ  will be (−1)
r  because here I am using sign as a group

homomorphism and sign of a transposition is -1 this therefore enough to prove that I have to

prove this V (X1 ,…, Xn)  and if I apply τ  to this I get −V (X1 ,…, Xn) , this is what

we have to prove, this is enough to prove alright.

Note  that  by  definition  of  these  Vandermonde  I  will  rearrange  this  product  and when  I

rearrange I will have to multiply by ±1  so note that there exist ϵ  belonging to ±1

such that  this  ϵ  times  X j−X i  okay and now I am assuming, I  want  to prove this

formula for τ  so τ  is the transposition i j with i strictly less than j and then I want to

prove this equality.

So find ϵ  which belongs to ±1 , this times product, product is running over k, k is in

between 1 and n and k is not in the set i j, this is (X i−X k )(X j−Xk )  and still I have to, no

place here but product now this product is running over l and m in between 1 and m and l m



both are not in i j and this product is X l−Xm , so here I should have written m is strictly

less than l, m and l in between but strictly less than this and l and m not in i and j.

So I have rearranged these product, see originally this was a product X, now I will write

X l−Xm , 1 less equal to l less equal to m less than l less equal to m, this was the definition

because i and j are fixed here so I do not want to use that running index and this I want to

rearrange this, first of all if l and m they are different, they are not in i and j because none of

them is i and j then I have kept that as it is.

The remaining factors will have the property that l and m is i j or they are different form so

that is and then while rearranging this I might have to apply by some either -1 or 1 so this is

very easy now I have to apply τ  to this, when I apply τ  to this what happens.
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So therefore τ  of V (X1 ,…, Xn) , this is what we want to compute, this is V of so I am

applying τ  to this side so that I push the τ  inside then what will happen to this, this

ϵ  remains as it is and this i and j get change, i and j this becomes  X i−X j  and this

factor does not change now because this will go to this and this will go this, so this factor

does not change because this one go to this and this one go to this.

So the factor does not change and this one do not change at all therefore only one change

happens namely this change, this has become this, so therefore it is obvious that this is equal

to, so remaining it is same as earlier and therefore this ϵ  also remains same so therefore



the τ  of this V is nothing but minus V (X1 ,…, Xn)  which is equal to sign of τ  times

V (X1 ,…, Xn) .

So  therefore  we  have  proved  our  lemma  that,  so  this  proves  the  lemma.  Alright  now

remember our problem was to define discriminant of a polynomial so I am going to define

first, so we will first define discriminant of f n , this is a general polynomial of degree n, so

I have these polynomial  f n=(X – X1)...(X−X n) , this is a polynomial that the advantage

here is, I have the variables only so I can play around with the polynomial, so I want to define

the discriminant of this.
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Alright so you take the Vandermonde of  X1 ,…, Xn  and take its square so what is this?

Before taking the square it is a product 1 less equal to i strictly less than j less equal to n and

X j−X i  and  I  take  the  square  so  I  take  the  square  inside  this,  this  is  by  definition

discriminant of f n , this is called a discriminant of f n . Now where is this, note that this

is clearly a polynomial in n variables over k and also note that see I have taken the square

therefore it is very clear that for every σ∈Sn , σ(D(f n))  is, I will just abbreviate this

by V.

So this is V 2 , this is σ(V 2
)  which is σ(V )σ(V )  but this is -V and this is -V so it is

V 2  which is D( f n) , so what does that mean? That mean this σ , this discriminant is

fixed under every  σ  so that means this discriminant  f n  belongs to the fixed field of

Sn  of the rational functional field in n variables but we know it by Newton’s Theorem.
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We know Newton Theorem, we know that this fixed field is precisely the quotient field of, it

is  a  function field  in  elementary  symmetric  polynomials  S1 ,…, Sn ,  this  is  a  Newton's

Theorem is  equality  and we have  proved that  D( f n)  is  an  element  here  so therefore

D( f n)  is actually you know it is a polynomial therefore D( f n)  is actually belongs to

the polynomial ring generated by  S1 ,…, Sn  over k, this is the polynomial ring we have

check  last  time,  this  is  a  polynomial  ring  generated  by  S1 ,…, Sn  over  K,  this  is  the

polynomial ring we have checked last time, this is a polynomial ring.

Because we have checked that S1 ,…, Sn  are algebraically independent and this is therefore

discriminant is a polynomial in  S1 ,…, Sn  alright. Also you can check this I will not use

but it is interesting to mention, this is a polynomial in S1 ,…, Sn  and the multi-degree of

this polynomial  D( f n)  is 2 times n minus 1, 0, 0, 0, 0, this is the degree of the highest

polynomial which appear in these polynomial.
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Note that when n is 1,  D( f n)  is 1, if n is equal to 1 because in this case the matrix is

identity matrix therefore the determinant will be 1, anyway so that was, so we have proved

that  the  discriminant  is  the  symmetric  polynomial  and  therefore  it  is  a  polynomial  in

elementary symmetric functions, now you can do a general definition, so general definition of

the discriminant of a polynomial and this will actually we do not need over field, we can do it

over arbitrary commutative ring but this course I will stick to the field.

So start with any polynomial f (X )  over any field in one variable, K any field and write it

as  and  I  can  assume  it  is  monic  so  f  is  monic,  f  monic  of  degree  n,  so  f  looks  like

Xn+a1X
n−1

+...+an−1X+an , any polynomial of degree n monic look like this where these

ai’s are the co-efficients, they are in the base field k, alright then we know that what is the

relation  between  ai ’s  and  the  roots  of  these  polynomial.  Now remember  we have  to

enlarge our field so let L over K be a finite extension, finite field extension of K.
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Such  that  f (X )  splits  into  linear  factors  in  L[X ] ,  this  was  what  we  proved  this

theorem long back due to Kronecker, that means what, in symbols f (X )  we can split this

into  linear  factors  because  f  is  monic,  all  factors  are  linear  so  it  is  like  this,  where

x1,…, xn  they are precisely all zeroes of f and they all lie in L, they could be repetition. So

V of f is therefore x1,…, xn  and they all lie in L and what is the relation between these

exercise and the co-efficients that we studied last time, in fact what we know is in general for

any r from 1 to n, (−1)
rar , this is nothing but the elementary symmetric function Sr

and then evaluate this at the, this zeroes.

So  S1  is  the  a1  that  is  the first  co-efficient  and so on,  first  means  co-efficient  of

Xn−1 , so therefore we know that  D( f n) , this is a polynomial in this guys therefore

when I evaluate this symmetric polynomial at these points that is −a1  etc. (−1)
rar  etc.

(−1)
nan , this is actually indeed an element in K, this is also what we proved last time,

therefore this make sense and this is called the discriminant of f.
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So we say that then  D( f )  is by definition take  D( f n)  and evaluate this  D( f n)  at

these points, this is an element in K because I evaluated this was a polynomial in n variable

over K and I evaluated at the points in K therefore this is indeed an element in K, this is

called the discriminant of f.
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So let  me write  in a proposition,  so formally what  we did the following proposition,  let

f (X )∈K [X ]  be a monic polynomial of degree n and x1,…, xn  are in L be all zeroes of

f in a finite field extension L over K then D( f )  is by definition the discriminant of f n

you evaluated  at  those thing but  that  is  same as  V (x1,…, xn)
2 which is  same thing as



product 1 less equal to i less than j less equal to n, (x j−x i)
2 , this V is the Vandermonde,

not the zero set.

So slightly one has to be careful while reading the notation V but this V will not come so

often so D( f )  is this, so moreover all zeroes of f are simple if and only if D( f )  is non-

zero, all. So discriminant is a constant which measures the non-zeroness of the discriminant

measures whether the polynomial all routes are simple or not, so it is visible here, the last

statement is very clear from this formula because if the two roots are repeated this product

will be 0 and therefore D( f )  is 0.

Conversely if  D( f )  is 0, this is in a field K therefore K and this product is individually

you think of it as an element in field L and this product is 0 then at least one component will

be 0 and therefore at least one 0 will be repeated, so this is a good measure for the and what is

the proof so let me write the proof formally.
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So proof, so what is by definition, D( f ) , I want to prove D( f )  equal to somebody and

so D( f )  is by definition D( f n)  evaluated at −a1  etc. etc. (−1)
nan  but D( f n)

is by definition  V (X1 ,…, Xn) , capital  X1 ,…, Xn  whole square and that this one was

same thing  as  D( f n)  evaluated  at  X1 ,…, Xn  and  this  is  same as  this  evaluated  at

X1 ,…, Xn  but this is same thing as product, this is the definition of this, 1 less equal to i

less than j less equal to n, small xj minus small xi whole square, that is it.



So the proof is very simple, now some small values you can calculate by hand, so for small

values of n, one can compute the discriminant for example when n equal to 1, D of 1 is by

definition 1, what will be D of  X+X 1 , this is n equal to, no this is n equal to 1 case, n

equal to 1 what is the discriminant now, yes so what do you have to do, degree 1 so there is

the what is V? It is only 1 root and therefore it is 1.
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Okay what about, now degree 2 is interesting, n equal to 2, this is what we did in the school

days right, I have the quadratic polynomial, it is written like this in our notation and therefore

we  know  if  you  would  have  written  so  if  you  would  know  this  polynomial  as

(X−x1)(X−x2) , they are at most 2, exactly 2 roots, if you count with multiplicity also, it

is written like this and therefore what we get is S1  evaluated at x1, x2 , this is −a1 , ,

but this one is −(x1+x2) .

And S2(x1, x2)  is, this is the product x1 x2  and this is equal to a2  and therefore we

want to get rid of this  x1 x2  and write in terms of  a1 , a2 , so the famous formula is

(x1−x2)
2 , this is the square of this which is a1

2  and then how do I get rid of the middle

term here, that is −4 x1 x2  which is −4 a2 , this is same thing as (x1−x2)
2  or I have

written the same thing as (x1−x2)
2 , this is Vandermonde square and that is this, so this is

our discriminant of X, D(X2
+a1X+a2) , so this is the discriminant. 



So remember in the school notation, I just want to remind in the school notation, we were

writing like this X2
+bX+c  and the discriminant was square of this, that is b2

−4c , this

was the school notation but I want to adopt this because we want to go on higher degrees,

alright so we have for cubic already we will have trouble to calculate, so our strategy will be

to learn more so that we can compute.
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Okay so now the question is the following, so therefore we know definitely the discriminant

of a polynomial which is in the constant, which is in K and this one is V square where V is

the Vandermonde of the zeroes of f so this is Vandermonde of the zeroes of f and this V is

not in K, this is in L, this V belongs to L and it may not be in K so V is in L where L is

splitting field of f.

It is enough that we adjoin all the roots of f to that K (x1,…, xn) , therefore this D( f )  is

a square in L. So clearly D( f )2  in L, but it may not be square in K, see it is an element in

K but in the bigger field it is square, but we do not know whether it is smaller field, it is this

square or not, that is very important, now let me state one theorem.
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So this is very important theorem, this is due to Cauchy proved in 1815, this say that if I

have, if I take the function field in n variables I know the group Sn  is operating on this, I

know the fixed point that was the Newton’s Theorem but now I take the sub group here an,

this is a sub group so an operates on this, on  K [X1 ,…, Xn]  and I want to consider the

fixed field, so the fixed an of the rational function field, what will do I get?

So this obviously it will contain this field K [S1 ,…, Sn ]  is contained because these guys

are fixed under all permutations in particular these ones so these will smaller than this but this

equality I want to write, this is nothing but adjoining the square root of D( f n) , this is what

I want to check, that is the Cauchy’s Theorem.

So the fixed field of the alternating group is precisely generated by a square root of the

discriminant of a general polynomial over the or the rational functional field in symmetric

elementary symmetric polynomials S1 ,…, Sn , that is the theorem, proof is very simple, we

will finish it off.
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So proof, okay what did we check, so what is first of all  D( f n)  square root, this square

root is V, this is Vandermonde because D( f n)  is V 2  so the square root is V and what

do we check in the lemma, we have checked that σ  applied on V is nothing but sign of

σV , therefore if I take V, σ∈Sn  then this is nothing but minus V, so definitely this V

is not fixed under this, therefore the fixed field, so let us call that fixed field of an of the

rational function field, this fix field definitely contained in the rational function field and

definitely it contains K [S1,…, Sn] , so I want to call it M, let us call this as M.

This is an intermediary field between this and we have checked that this extension is a Galois

extension with Galois group Sn , this we know already and this is a fix field in between

and what is therefore the fundament theorem of Galois theory, what does it say, it says that

the fix fields will correspond to the group right.
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So the fixed, so this M will corresponds to this intermediary field, this will correspond to the

Galois group of L over M, so L is this big field, so this is under the Galois, this is the fixed

field of, this is fixed an L, so L is the rational function field and now K was not the K but this

considering over K [S1,…, Sn] , this is Galois, so this Galois group correspond to this fix

field and we want to compute this one but what is this, this you get back an right that is

precisely the fundamental theorem of Galois theory.

And  this  index  will  corresponds  to  the  dimension  that  is  M  over  K,  M  over  this

K [S1,…, Sn] , this was precisely information from fundamental theorem of Galois theory

but this index we know it is 2, so therefore this degree is 2 that means M is generated so but

this is obvious K of  S1 ,…, Sn  this M is here and M definitely contains  K [S1,…, Sn]

adjoined with V, this definitely contained here because V is also in M because V is fixed

under all elements in the alternating group so therefore this is clear and this degree is true that

we know it because this index is 2 therefore we have no choice but equality here and once it

is equality here that is what the assertion was.
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So  this  proves  M equal  to  K [S1 ,…, Sn ]  adjoined  with  V but  this  is  same  things  as

K [S1 ,…, Sn ]  adjoined with the square root of a discriminant but these M is nothing but

the fixed field of An  of K rational function field so this was precisely Cauchy's Theorem,

of course Cauchy did not prove it this way because Cauchy did not know what is fundamental

theorem of Galois theory so this is a modern proof of you can say this is a modern proof of

Cauchy's Theorem okay, with this I will stop and we will continue in the next lecture, thank

you.


