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Digression on Symmetric and Alternating group

In the last lecture we have been studying symmetric polynomials and we have proved the

fundament theorem on symmetric polynomials which say that every symmetric polynomial in

n variables  is  a  polynomial  in  elementary  symmetric  polynomials,  this  is  very important

theorem which  was  approved  essentially  by  Newton  and  today  I  will  discuss  about  the

discriminants of a polynomial.  So in general we have been dealing with discriminants of

small degree polynomials in school and colleges but today I will define discriminant for a

general polynomial of any degree and we will use it  to study the Galois groups of some

polynomials.
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So as usual K is our base field and we have general polynomial  of degree n that I have

denoted f n, this is a polynomial, (X – X1 ) ... ( X− Xn ) and we consider this as a polynomial over

the ration function field in X1 ,…, Xn and X this is what we consider this is a polynomial in X

with co-efficient in the rational function and we have seen that this polynomial has when you

expand it,  it  is  X n−S1 X
n− 1.. .,  etc.  etc.  middle  term is  (−1 )

r Sr X
n−r and  the  last  term is

(−1 )
n Sn,  where this  S1 to  Sn are  elementary symmetric  polynomials  and for safety I  will

define S0 equal to 1, so I have these, this is a general polynomial of degree n.
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So when I have a polynomial in one variable over some field then I will satisfy this capital X i

equal to the roots of that polynomial and get back the original polynomial that is the idea.

Now I consider these so let V which is V (X1 ,…, Xn ), you will see why I chose the name V,

this is precisely Vandermonde’s determinant, I will write here Vandermonde’s determinant

and what is that?

That is you take the matrix X j
i , i is varying from 0 to n−1 and j is varying from 1 to n, so it is

to get our hands so for example the first column is j is 1 right and i is varying so 1, X1 , X1
2, .. .

etc. etc. it goes on to X1
n− 1, this is the first column, the jth column will be 1, X j , X j

2 ,.. . etc. etc.

X j
n− 1 and so on, this is a big matrix, it is n cross n matrix and therefore determinant of that

make sense.

These determinant you would have studied well in the college days, this determinant is I am

denoting  by V,  so it  is  a  polynomial  in  the  variablesX1 to  X nokay when you solve this

determinants you would have realized this is the value of this determinant is product, product

is running over the indices 1 less equal to i, i strictly less than j less equal to n and the product

X j− X i, I will just indicate how it is solved you just subtract the column 1 from column 2 let

us say and then you take out the common factor X2− X1 and so on and that is what you do.

So this I would simply say this equality you verify, that is not too difficult so this is the

Vandermonde’s  determinant  and  this  is  called  Vandermonde  determinant  ofX1 to  X nand

remember it is a polynomial over a field K, you can take any fieldX1 to X n, it is a polynomial



there,  also therefore  you can think  it  is  a  rational  function,  okay and the  first  important

observation now I want to make in the following lemma.
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So  lemma  for  every  permutation  σ∈Sn,  if  I  permute  variable  in  the  Vandermonde

determinant according to σ  that means I am taking σ  of this, so this was by definition what,

this was by definition V of permute the variables according to σ , this is X σ1 ,…, Xσn, now if it

is equal to V then V will be symmetric that was the definition of a symmetric polynomial

right but this is not symmetric so what comes out is sign σ  times V (X1 ,…, Xn ), where sign of

σ  denotes the signature of the permutation σ .

Now I should digress little bit on the definition and some easy properties of the signature that

I do it before I prove this lemma and we will come back to the proof of this lemma, so this

says that this Vandermonde determinant is not a symmetric polynomial but it is almost like a

symmetric polynomial.
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Okay so before we go on now this is Digression on the group Sn essentially, so the elements

of the permutations we know, so  σ  any element, now note that the  σ  is a permutation so

therefore this σ  operates on the set 1 to n, so therefore I can talk about orbits, so when I say

orbit of Oσ (1 ), what does it mean? This means it should orbit of 1 under σ  that means it starts

with 1 then let us go to σ (1 ), if it is different from 1 stop it, then if it is then go to σ 2 (1 ) and so

on.

Now you will come to the power σ k −1 (1 ), 1, and then I have chosen in such a way that these

elements are distinct then you note that if I look at σ k (1 ) it has to be equal to 1, it has to be

return to 1 so pictorially it start like this, 1 will start with 1 then σ (1 ) then go to σ (2 ) then go

to σ (3 ) and keep doing this, ultimately you will come back to 1, this is σ k (1 ) that will be 1 and

just 1 before so why does it come back to 1?

Because if it does not come back to 1 then it will be some smaller power of σ  but  σ  has a

inverse so just cancelling that you will get a contradiction to the fact that these elements are

distinct therefore  σ  power 1 is 1 so this is called a orbit of 1 now you choose an element

outside this and do the same process, so therefore what it means is and if I restrict σ  to this

set so σ  restricted to, so I will write on the next page.
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σ  if I restrict to the orbit of 1, it is a very nice, it is actually a what is the k cycle, what does

that mean, that means we can write this as only elements which are disturbed under this is 1,

start with 1 then it goes to σ (1 ) and so on, it goes to σ k −1 (1 ) and then it comes back to 1 so

you can complete it here, so therefore to this subset, if I restrict  σ  then it is a k cycle, the

remaining element under these are fixed.

So I can do now if 1 to  σ k −1 is exhausted all the latest I keep quit, otherwise I choose an

element outside these and do the same thing that means this means if I continue like this, this

means  σ  is a product of disjoint cycles, I will define what is a cycle, so that means I have

written  σ  as a product of disjoint that means they do not have anybody in common, this I

have written it as some ρ1 ...ρr where ρ1 ,…, ρr are cycles and this may have length l1 ,…, lr,

that means this is l1 cycle, this is lr cycle and some of them could be one cycles, one cycles

means they corresponds to the fixed point.

So  1-cycles  they  correspond  to  the  fixed  points  of  σ ,  so  if  one  wants  to  understand  a

permutation one has to understand each cycles carefully and they do not middle with each

because they are disjoint therefore they commute, so disjoint will mean that they commute so

cycles disjoint and that means they commute ρy ρ j will be equal to ρ jρ y so as far as finding

the order of the permutation σ  in the permutation group, if we know the orders of these guys

then we will know order of the σ  because they commute therefore the order of the product

will be the LCM.
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So the advantage is our calculation becomes easier, comfortable so from these we will know

that order of σ  will be equal to LCM of orders of ρ1 to order of ρr and therefore we only have

to know what is the order of a cycle so if you take a k-cycle that means what, it is like this, in

general it is ⟨a0 , a1 ,…,ak −1 ⟩, it has k −1 elements in that.

These are the elements which are moved under these k-cycle remaining elements which are

not here they are fixed so the order will be precisely order of these if you call these k-cycle as

rho then order of rho will be nothing but k that means rho power k is identity that is easy

because once rho square will,  ρ maps is  a0 to a1,  ρ
2 will map a0 to a2 and so on when you

take k times composition of ρ with itself you get back identity.

So for  example  order  of,  if  you take  2-cycle.  2-cycle  is  also  called  a  transposition,  the

transposition looks like a, b, the only two elements which move under the transposition a and

b remaining elements are fixed so this is usually denoted by τ  so τ 2 if I want to compute, look

at τ 2 (a ), τ (a ), this is τ ( τ ( a ) ), but τ (a ) is b, so this is tau b but tau b goes back to a so it is a.

Similarly τ 2 (b ) is b therefore a and b are fixed and the remaining are already fixed therefore

we conclude that tau square is identity and if a when one writes transposition usually a is not

equal to b otherwise it is added so therefore order of a 2-cycle is order of tau is 2, so if you go

on then it is clear that order of a k-cycle is k.
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And therefore if you would have written σ  as a product of disjoint cycles rho 1 to rho r these

rho i’s are k-cycles of disjoint, disjoint is very important. Then the order of σ  is order of this

product, order of the product element in the group is not so easy to compute in general but

when they are commuting then that order is nothing but LCM of orders of those elements, so

this is easy to check so one more, what is the 3-cycle?

3-cycle is look like this a. b, c that means a, b, c are moving and this notation means a goes to

b, b goes to c, so if this is rho, this is 3-cycle. So order of these 3-cycle will be 3, that is in

general.  So we can easily  compute  if  I  give you the permutation,  I  first  decompose that

permutation into disjoint cycle and read the order, now what is a signature? So I would have

to define signature in the same way so and also I should have mentioned earlier 1-cycles are

identity okay.
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So to define a signature of permutation σ  what is it, you first decompose into disjoint cycles,

rho 1 to rho r, rho i cycles and their disjoint, so therefore support, what is support of a cycle?

Support of any cycle rho is precisely the elements which it moves that means the elements

which it contains.

So if rho is this a0 to ak minus 1, this is a k-cycle, the support of rho is precisely this subset

a0 to ak minus 1, so if rho is a k-cycle then the support of rho has cardinality precisely,

cardinality of the support is precisely k, since support is a subset of 1 to n and if you take

their unions, unions of the support, so if σ  is this written as a product of disjoint cycles then

we know that this set 1 to n is precisely the disjoint union of supports of rho i, i is from 1 to r,

disjoint union because they are disjoint and therefore we have decomposed this set into this.
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Now some supports  may have  only  the  singleton,  the  1-cycles  are  precisely  the  identity

element so they are 1-cycles will correspond to the fixed points so note that when you write

1-cycle, 1-cycle simply means like this but this is equivalent to saying a goes to a so this is

like identity, so when we do this calculation we might as well assume that σ  is rho 1 to rho r

and they are cycles, disjoint of course of length big or equal to 2 because that is not playing

any role here, so those are precisely the fixed points.

So therefore to define a sign of σ  I want to define sign of cycle first where rho is k-cycle and

this I define it to be equal to minus 1 power k minus 1, the number of elements minus 1 so

this will give us sign of tau, where tau is a transposition, a not equal to b then this sign is

minus 1 power 2 minus 1, this is so it is minus 1 so sign of a transposition is minus 1, sign of

a k-cycle is minus 1 power k minus 1 and then you define sign of σ  to be the product of the

signs, this you define this, this is the definition, so that is a signature of a permutation.

Now what is sign of a 3-cycle, sign of say permutation 1, 2, 3 this means 1 goes to 2, 2 goes

to 3 and 3 goes back to 1 and remaining guys are fixed, so this is therefore 3-cycle therefore

sign is minus 1 power 2 which is 1.
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So the permutations we have which we have sign, sign is therefore we have define in a map,

this is a map from the group Sn to the two elements with plus minus 1 so any σ  goes to sign σ

and what is more important is every cycle you can write it as a product of transposition for

example so for example if I have cycle 1, 2, 3 this is a product of 1 goes to 2 composed with

1 goes to 3 is clear, so one has to be little careful how do you calculate.

So first you go from right to left, that is like a composition, so here 1 to goes to 2, 2 is fixed

so 1 goes to 2, I am checking this equality, 1 goes to 2, 2 is fixed so 1 goes to 2, where do 2

go? 2 goes to 1 then 1 goes to 3 so 2 goes to 3, where do 3? 3 is fixed under this and 3 goes to

1, so this 3 goes to 1, so that is how 1 decompose cycle into product of transposition but

remember these are not, these are transpositions but not disjoint, they are not disjoint.

So similarly you can decompose any k-cycle into product of transpositions and this way we

would have decomposed any σ  in Sn is a product of transpositions but we cannot say now the

product of these transpositions is disjoint that we cannot say, may not be disjoint.
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But what we can assert is the following easy lemma which I am not going to prove, I will

leave it as an exercise so if σ  is a product of disjoint transpositions in two ways, tau 1 to tau r

and tau 1 prime to tau prime s where tau i tau prime j are transpositions then these r and s

they are equal mod 2, this is easy verification which I am not going to do but this will allow

us therefore once important consequence will be, corollary will be the sign map from Sn to

plus minus set, now this is a group under multiplication, this is also group under composition

and this map is a group homomorphism.

So signature is a map and therefore kernel makes sense, kernel of sign, this and obviously this

group homomorphism is non-trivial, non-trivial means where n is at least 2, non-trivial means

everybody does not go to 1, at least one element here goes to 1 well where the transpositions

are going to minus 1 and because n is at least 2 there are transpositions and therefore kernel

of this homomorphism is not the whole group, it is properly contained in  Sn and these are

precisely all those permutations σ  such that sign of that σ  is 1.
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And sign is 1 means the σ  is a product of even number of transpositions and therefore this

group is very important and that group is called, so kernel of sign this is the definition, this

an, this is a sub group of Sn and this is precisely all those permutation σ  in Sn such that sign

of  σ  is 1 but this is same as all those permutation  σ  in  Sn such that  σ  is a product of even

number of transpositions.

And it is also clear that this is an is normal, normal subgroup of Sn because it is kernel of a

group homomorphism and of index 2, in fact it is very easy to see that this group Sn is same

thing as an disjoint union any transposition times an, where tau is any transposition, that is

very clear because we know that these An is a kernel therefore what we know is Sn modulo

the kernel that is an, these group is isomorphic to the group plus minus 1. 

This group has kernel into 2 therefore these quotient set as kernel into 2 that is the meaning

that it is index 2 and therefore this decomposition there only 2 co sets of an in Sn and they are

precisely this, with this I will prove the lemma in a next half and we will continue after this

digression of a group to study.

I have not yet come to the definition of a discriminant  so I will study the Vandermonde

determinant  under,  we want to  check that  if  you apply,  if  I  permute the variables  in  the

Vandermonde determinant what happens to that determinant is it changes the sign according

to the sign of that permutation. So I will continue after the break.   


