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So last time you finish the proof of the fundament theorem on symmetric polynomials, so we

have proved that the fixed fields with respect to Sn of the polynomial ring is precisely the

polynomials in S1 to Sn with coefficients in K I just want to illustrate these by one example,

our  process.  So  for  example  you  get  the  polynomial  X1
2
+X2

2
+...+Xn

2 this  polynomial  is

obviously symmetric polynomial.

This  is  symmetric  polynomial  in  K [X1 ,…, Xn ],  so  what  is  our  process  to  write  it  as  a

polynomial in  S1 to Sn, what? So what is the multi-degree turn is, this one. X1
2 is the multi-

degree of, so 20 0 0 0 this is a multi-degree of this polynomial f and we know what to cancel

this term and so on. But directly also you can see this is very simple, if you take  S1 and

square  it  which  is  (X 1+...+Xn )
2,  so  this  is  symmetric  and   we  subtract  from this  given

polynomial  f  and  then  this  term  will  get  cancelled  and  keep  doing  it  but  in  this  case

observation is very clear.

This is X1
2
+X2

2
+...+Xn

2  minus the cross terms, so that is 2 times X1 X2+X1 X3 and so on. So

for 2 at a time, so this is nothing but S2, so this is therefore the given polynomial f, this was f



and I shift these 2 S1 to the other side, so this f will be equal to S1
2−2S2 which is the other

side is clearly symmetric. And this one this is the process, so this is actually our proof is very

algorithmic.

Alright, see this is one another remark I want to make is little bit more serious because, see

we have proved that now I want to know about the rational functions. 
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So I want to say the fixed field of Sn of the rational function field X1 to X n this is equal to

rational functions in  S1 to Sn this I want to check. So obviously this is obvious because if you

do the rational  function in  S1 to  Sn then all  these Sis are fixed under every permutation

therefore the polynomial  will  be fixed under every permutation  and this  is  a polynomial

divided by polynomial. So therefore they will be fixed therefore rational function is fixed, so

this proof is clear.

But  to  the  other  proof  it  is  little  bit  more  serious  because  look at  example,  look at  the

following example 1 over X1, this is a rational function 1 over X2 this is also rational function

plus so on and so on plus 1 over  X n this is a rational function and what is it?  if I want to

write it then but how do you write this as a quotient we want to write this as some polynomial

what do I call it? Some polynomial ϕ by some polynomial ψ where this ψ is the polynomial

in  S1 to Sn and ψ is a polynomial in  S1 to Sn.

So we need little bit more work, so therefore we cannot say that if we have a rational function

f  by  g  suppose  f  and  g  are  2  polynomials  and  I  consider  this  rational  function  f,  g  in



K [X1 ,…, Xn ] and if I call this as this is my rational function, this is symmetric if f by g is

symmetric then f and g need not be symmetric. There is very easy because here is an above

example.

You see if I write it what you see inside this case? ψ will be obviously X1 to X n and ϕ will be

what? That will be I have to multiply this by X2 to X n and so on. And that will be the sum, so

therefore  if  a  rational  function  is  symmetric  than  the  individually  f  and  g  may  not  be

symmetric polynomial but you know writing this is not a unique way of writing the rational

functions.
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So how do you make it more clearer? Alright, so I will take suppose f by g is symmetric

assume that. If f by g is symmetric rational function then I want to write I want to write f by g

by capital F by G, so that F and G are no symmetric then  that will prove the other inclusion.
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Then this will prove this will  prove this inclusion because as to how do they do rational

function which is symmetric and I have written it as F by G where F and G are symmetric

polynomials, so I have to prove this. 
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And this means I have to I’m allowed to multiply up and down by the same polynomial then

this action doesn’t change that is ideal. So what will I multiply by? So obviously note that

how do I make a given polynomial, if I have even arbitrary polynomial f, arbitrary. How do I

make it symmetric? So to make f symmetric what I have to do is?



I have to take the product, product is varying over  σ  in  Sn,  σ  of f,  σ  f these are obviously

symmetric  because  when  I  take  any  permutation,  apply  permutation  to  this  product.

Permutation is a k algebra homomorphism, no. So therefore this will be product and therefore

this is clearly symmetric because if I apply σ  that is applying σ  here but then because this is a

group this product will not change, so it is symmetric.

Either this or also another one is sum, take the sum  σ  f  f,  σ  varies in  Sn both these are

symmetric  polynomials.  If  note  that  if  f  is  arbitrary  polynomial  then  this  and  this  are

symmetric this is what I will use it,  okay. Now obviously f is a factor here because  σ  is

identity, so it is a factor, f is a factor there.
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So now given f by g in the fixed Sn  K [X1 ,…, Xn ] symmetric rational function then I am

going to multiply up and down by h. So h equal to product σ  g as σ  varies in Sn but σ  is not

identity to get this product. So obviously what I said was the g is if I take product σ  in Sn σ  g,

this is g times h and this g times h is symmetric.

And  now I’m going  to  multiply   up  and  down by h,  so  f  h  and  gh now this  becomes

symmetric and this is my ϕ,  let’s call this as ϕ,  ϕ or symmetric. So I have symmetric and

this is symmetric therefore fh which is  ϕ times gh but now because  ϕ is symmetric gh is

symmetric therefore fh is symmetric. So therefore both are symmetric.
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So therefore the  ϕ we have written it as some polynomial above because it is a symmetric

polynomial. It is a polynomial some η of  S1 to Sn divided by θ of  S1 to Sn. Where η and θ are

polynomials in n variables or K and this is therefore an element in K  S1 to Sn, so that proves

our theorem for rational function field also and we are interested in more in that.



(Refer Slide Time: 12:36) 

So  now  I’m  going  to  deduce  couple  of  corollaries  from  this  theorem,  so  for  example

Corollary 1, okay. So suppose I have any polynomial f in 1 variable, now you see I’m going

deduce consequences for polynomials variable, so suppose let I have f is polynomial in 1

variable over f a filed K, k Field. And suppose X1 to X n are zeros of f in L over K. So I’m

taking all zeros, we know that there exist a finite field extension L over K such that all the

routes of f lie there.

This was precisely Kronicker’s theorem, so I have a field extension where all the roots are

there, okay. Then what? What am I saying? Then given any symmetric polynomial capital F

symmetric  is  very  important  in  n  variables  K,  I  will  call  them  K [X1 ,…, Xn ],  given any

symmetric polynomial in n variable capital  F, if I evaluate this F atX1toX nthen this is an

element in K, that’s what I want to check.
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So that means what, so proof? Proof, what we are doing is a falling? We have a polynomial 

being here K [X1 ,…, Xn ] and we have that field L where all these routes X1toX n they all 

belong to this capital L and we have the substitution homomorphism here ϵ X. What is it? 

These variables capitals X i go into small x is this is the key algebra homomorphism. And what

I’m saying now?

A polynomial capital F symmetric means what? That is a polynomial in capital  S1 to Sn or 

take an arbitrary polynomial F and this is contained here, all this is contained here. In fact this

is the fixed ring of this under the action of Sn, F is here and take its image here appropriately 

it lies in L but I’m saying it actually lies in K, so F ofX1toX nthis is the image of F under this, 

this actually lies in K that is what we want to prove, this is what we want to prove.

Why that? That is very simple because what do we know this is a polynomial in  S1 to Sn and 

therefore if I write this as as summation aν S
ν this is running over ν finite subset and a νs are 

elements in the field K and this is the standard notation what we are using it S1
ν1 ...Sn

νn where 

this ν is ν1 to νn then where is the image?

This goes to the same here, this is natural inclusion map and then I have to evaluate, so where

does it go?  so this polynomial F goes to summation a miu because a mius are constant so 

they go to the same and this one will go to S1 evaluated at X1 to X n
ν1 and so on. Sn evaluated 

at X1 to X n
νn this is where it goes. So I only have to check, so enough to prove.



Enough to prove that if I take any elementary symmetric polynomial Si or Sr and evaluate it 

at X1 to X n that should belong to K this is what enough to check for all r from 1 to r where all

these guys individually they are in k therefore their powers are in K therefore the sum is in K 

and then you finish. 
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But what do you know about this? What is the relation between F roots and the symmetric 

function? So remember f is splits into linear factors that is this, this is in L [X ] under there and

when I expand it what do I? I get X n−S1 (X1 ,…, Xn , Xn−1 ) and so on. Middle term (-(−1 )
r X 

Power Sr evaluated at X1 to X n times X n− r and so on.

The last term is (−1 )
n Sn (X1 ,…, Xn ) this is what when we expand it and collect the terms 

together. And these are where then, these are precisely therefore that is Sr ( X1,…, Xn ) so on,

Sn evaluated at X1 to X n these are coefficients of f and they belong to therefore K and plus 

minus sign. So therefore all these terms they belong to K therefore the f evaluated atX1 to X n

will belong to K, so that finishes the proof. So this was Vieta, okay so that was corollary 1.
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Now corollary 2, okay now I want to say that  the elementary symmetric functions symmetric

polynomials I sometimes interchange the word polynomials and functions but they are same 

at least for us in this context. Elementary symmetric polynomials  S1 to Sn are in X1 to X n are 

algebraically independent over K that means they don’t satisfy any relation among 

themselves, any polynomial relation among them not only linear they are algebraically 

independent, no relation.

So that means this polynomial this sub algebra is actually are polynomial algebra over K so 

they behave like a variable.
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So proof, okay proof is very simple. Proof, what do we want to prove? So we want to prove 

that they are algebraically independent that means given any variables K n variables Y 1 to Y n 

these are indeterminates,Y 1 to Y nare indeterminates over K, so this is a polynomial algebra. 

And from here we are giving a map to K [X1 ,…, Xn ] this map is what if I want to give a map 

from one polynomial algebra to the other K algebra I just have to give its values on the 

variables.

So I will map Y is to Sis and I want to check, so let us call this map as  ϕ, so ϕ is a K algebra 

homomorphism, obviously image of ϕ is a K sub algebra generated by the images of Y i that is

S1 to Sn and I want to now show the kernel of ϕ is 0, to show kernel of ϕ is 0, once I show 

this, this symmetric K sub algebra generated by the  elementary symmetric polynomials, this 

will be isomorphic to the K [Y 1 ,Y 2 ,…,Y n ] mod kernel but kernel if I would have put 0 this 

will be isomorphic to K Y 1 to Y 0.

So that is because of this so I have to prove this, so that means what I have to prove that the 

kernel is 0 that means suppose F is in the kernel, suppose capital F belong to kernel of ϕ, so 

these F is actually polynomial in Y 1 to Y n, so let us write itY 1 to Y nand it goes to 0 means 

when I substitute Y i is capital Sis I get 0. And then what do I want to prove? I want to prove 

that F is actually a 0 polynomial.
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So I want to prove, to prove capital F is 0 polynomial that means no coefficient of F is 0, 

alright. So suppose it has some term which is nonzero, so remember we have written in a 



multi-degree setup F we have written it as summation aν X
ν, aν is a tuple varying in ℕn only 

finitely many terms nonzero. So suppose F were non-zero, if F is nonzero, F is nonzero that 

there will be a multi-degree term and there will be highest degree term, so highest multi-

degree term.

So this F will look like aν X
ν plus lower multi-degree I should say But now when we write

like this when we write like this, this ν which is ν1 to νnin our notation it is multi-degree of F

and therefore this monomial will not occur anyone else in between, in this side it will not

occur.

Not only that all  the monomials are different, so when mui is different this when ν not equal

to ν then these terms are different, so what will happen when will this X ν will go when I put

not X it should have been Y here they are polynomials in Y. So when I put  Y i is equal to

capital Sis what will I get? I will get aν S1
ν1 ...Sn

νn and somewhere else here.

If there is some term here some b ν  S1
ν1 ...Sn

νn. Now I want to say that what is a multi-degree of

this  one? So  we have seen multi-degree of  this  one is  ν1+...+νn,  one at  a  time we are

dropping, so at the last one will be νn− 1+νn, νn this is a multi-degree term.

Because here it will be when you raise it to power mui1 that is the first one when you raise

the next one is to power ν2 that is this one and so on. When you raise this, what will be the

last coordinate here? That is X n
ν1 and so on.
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So what I want to say is the following the multi-degree terms are different, so when mui and

mui are not equal multi-degree of S1 mui1 Sn mui n is different from multi-degree of S1 mui

1 Sn mui n, so how can they get cancelled? So nobody will get cancelled, so the terms are as

it is they will appear in F of  S1 to Sn, so therefore F of  S1 to Sn will also be nonzero, if F is

nonzero.

But we are assuming that therefore in the kernel, so this contradicts F belongs to the kernel of

ϕ,  alright.  So  we  have  proved that  corollary  2  that  the  variables  are  this   S1 to  Sn are

algebraically independent over K.
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Next time therefore we are in the following situation. We have this rational function field

K [X1 ,…, Xn ] which  contains  the  fixed  field  of  Sn  and  this  is  what  precisely  the  field

generated over K by elementary symmetric polynomials this. 
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So we definitely know, so remember that this  Sn and the Automorphisms of the rational

function field there is a map here and σ  going to, I want to define an Automorphism of this

field. So it is enough to define Automorphism of the polynomial ring, so  K [X1 ,…, Xn ] to

K [X1 ,…, Xn ] the σ , the same σ  square Xi will go to X σ  i this is clearly an Automorphism of

this polynomial algebra.

And therefore that will give that we can exchange that Automorphism to the rational function

field that I will call it again σ  only, so therefore each σ  permutation on 1 to n will give you

Automorphism of this field, this is a big field. And moreover this map is injective because

from this Automorphism you can always recover that σ  that is in fact you know that is related

to the inverse of this Automorphism.

 or in other words the σ  and τ  different, these Automorphism’s are different clear because

X i and  X σ (i ) , X i goes to X σ (i ), so if σ  is not equal to τ  then at least one σ  i will not be τ (i ) and

therefore  X i  under  σ  it will go to  X σ (i ) and  τ (i )  it will go to  X τ (i ) but these are different

therefore  these  are  different  therefore  σ  is  not  equal  to  τ ,  so  it  is  injective  group

homomorphism .

So therefore this group Sn is finite, this is a subgroup of this Automorphism group. 
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So I want to remind you that we have proved earlier that whenever we have field L, L is any

field and if I take a finite subgroup G of Aut L finite then we have proved that the fixed field,

this is operating on else therefore we have checked that fixed field of the G operation on L

this is a subfield of L and this extension is Galois extension with Galois group G. Therefore

we have proved the following corollary.

We have proved that K [X1 ,…, Xn ]∨K [S1 ,…, Sn ] is a Galois extension with Galois group Sn.

In particle we have a Galois group Sn of this extension but remember this is not ℚ, our Galois

problem is finding an extension of ℚ which is Galois and Galois group is a given group, so

still we are far away from that inverse Galois problem but at least this nice result is there.

That this extension is Galois with Galois group Sn in particular the degree is in factorial. 
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So in particular degree ofK [X1 ,…, Xn ]∨K [S1 ,…, Sn ] this degree is precisely equal to order

of the Galois group which is Sn and order of the Sn is precisely n !, so with this I will end this

lecture and we will continue studying symmetric polynomials more and then next what will

come is, the discriminant and then I will also get field extension and then we will find the

order of that feel extension and also we will find that Galois group of that field extension and

that will be precisely the alternative group.

So thank you and we will continue in next time.


