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Now we are starting a new investigation namely, remember that this course main aim is to

study the 0 is of a polynomial over a field in one variable. And we want to gather information

about these zeros from the knowledge of the Galois group for example. And when you want

to know when these zeros have the formulas, so in order to understand zeros of a polynomial

without computing that is  the main task because remember computing a 0 all  zeros of a

polynomial is a very big task and we want to avoid that big one and just looking at  the

Cauchys we want to extract the information that is the main aim and to know whether there

are formulas or not.

So  first  of  all  there  are  so  many  terms  way  here  what  I  have  talked,  when  you  say

polynomials where are the zeros and so on and so on. So I am going to start a polynomial

over many-many variables and when I specialize it to the zeros I will also get my coefficients

specialized at the zeros, so in general I call, so soon things will become clear when I have a

precise notation.
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So I consider so suppose K is a field given this is given and an integer natural number n is

also given.  And I  consider  a  polynomial  over this  field  in  n variables  so I  consider  this

K [X1 ,…, Xn ], this is the polynomial bringing in several variables over this. We know the



Cauchy field is precisely the field of rational function  X1 ,…, Xn. And we have a group Sn,

this is the permutation group on n letters 1 to n, this is a group and I want the natural action of

this group on this polynomial. So then I want to say that  Sn operates on the field rational

function field in n variables over K by what? So I should tell  when what happens to the

rational function.

So taking a rational  function  ϕ,ϕ (X1 ,… , Xn ),  remember this  is  a rational  function so this

means it  is  a polynomial  divided by polynomial.  In this  I  want to interchange I  want to

permute the variables according to the permutation, the given permutation in Sn. So given any

element here and any element in the group σ  this goes to ϕ (X σ (1 )
,…, X σ (n ) ), so this is clearly

an operation of group so this this that means Sn operates on this field by this operation. So

that is very easy to check that this is an operation, remember we will have to check two

things if σ  is identity then you do not... This is also same as ϕ and if I have two permutations

then whether I apply individually and then I apply the composition that is the same operation

so this is clearly a group operation.

Now, whenever we have a group operation one has to understand the fix elements and one

has to understand orbits and one has to understand the stabilizers, this is always and then we

have the information from this. Let me just mention here, Lagrange was the one who started

this but Lagrange did not have this language that time of operation or a group or an isotropy,

he did not have this operation he did not have this language but he was thinking along the

same lines and his problem was, what was his problem? I will just mention it before we go

into  the  precise,  so  Lagrange  was  looking  for  what?  Lagrange,  he  was  looking  for  the

following.
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He started  with  the  given  f,  he  started  with  f  rational  function  ϕ rational  function  in  n

variables and he took he took elements from Sn, those are the per quotations, that time there

was not even in knowledge that they are permutations. Later on when people developed when

people thought about what an odd, people developed language of permutations and more

about  permutations  like  transpositions,  cycles,  what  are  their  orders,  what  are  their

decompositions, what are their signatures and so on. And the 1st systematic study started by

Cauchy,  this  is  study  of  permutation  and  study  of  groups  also,  finite  groups  specially

therefore you could prove the theorem if P is divisor of the order of the group then there is

element of order P etc, etc.

So Lagrange was doing the following, I started the rational function then some permutation

and then applied let me write σ ϕby definition ϕ of permute the variables, this is new rational

function. Now if this was different from ϕ keep it, if it is equal throw it then take another

permutation and do the same thing and he wanted to go on like this and question is how long

you can go on and what is the least number he has to stop. So in our language now it is very

easy that means he had taken ϕ and he had taken the orbit of ϕ under this action. So in our

notation remember it is Sn multiples of ϕ and his question was what is the cardinality? That

was what Lagrange wanted.

And you could guess clearly that this is the device of n factorial but you could not prove this

and that is what led in general to the orbit stabilizer theorem, now it is very clear that this is

the device of because this cardinality of this orbit is same thing as index of the stabilizer in

this  group so this  is  again the notation  Sn suffix  ϕ,  this  is  the stabilizer  of  ϕ that  is  the



cardinality of the orbit and this is clearly a divisor of the order of this divides order of  Sn

which is we know it is n factorial.

So this was Lagrange, we started by Lagrange, Lagrange did not prove this precisely and his

student Abott proved it finally and later on standard textbooks on finite group theory you will

find now the Lagrange’s theorem which says that order of a subgroup finite group divides the

order of that group, this is what it came into the existence okay. So now what do you want to

do?
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We know that  Sn operates on this field rational function field so we write like this, this to

K [X1 ,…, Xn ] there is this operation map. And whenever a group operating on the set, it is

most important to find the fixed element so what is, now I have a field. This is the field

K [X1 ,…, Xn ], this is an extension of K, this is a very big field and this group is operating

there so I want to find, what are the fix  Sn K [X1 ,…, Xn ] and this is contained here that is

obvious and this. And now there are so many questions for example, we can ask about this

bill extension namely is infinite, if it is finite what is its degree? Is it Galois? What is this

Galois group and so on? All these questions are cropping up.

So the first question I want to understand, I want to concentrate is what is the fix field? So I

want to describe this fix field, the description of this fix field that is what I want to do. And

not only Lagrange that were many people involved in this and the main people involved in

this right from the Newton, Viete or Vandermorkm Gauss, all these people were involved in



this to understand this. And the theorem which I will write that theorem in those days it was

never written up precisely but it was sort of known that everybody knows it. The 1st written

proof we can find only in a Gauss’ writings so that is it so for that I want to now I want to

give some examples of fix points of these fix elements in a rational function field so that at

least to start with, so those are precisely called Elementary symmetric polynomials.
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What are they? So note that this action of  Sn on the rational function field, it is also if I

restrict it to the polynomials it also go to polynomials so  Sn also operates not only on the

rational function , it operates on the polynomials also.
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So the first one  S1, look at the sum of these variables, it  is obvious that if I permute the

variables this S1 will not change so therefore it is clear that this one belongs to the fix points

of  Sn and the polynomials.  And another thing I  want to  note here,  even this  field is  not

playing any role you could take orbit ring and this group is operating on this polynomial ring

over orbit ring K and this polynomial is the sum of the variables. It is clearly fix because

when I permute the variables, this polynomial is not going to change. Now S2, now you take

product two at a time so that means the sum X i X j and this is running over all the indices i

less than j so product 2 at a time and I could have chosen sort of this.

This is clearly fix because if you interchange the variables this product will go to some other

product which is also a part and so on. Similarly, I can go on till Sn this is the product of all

X1 ,…, Xn. If I have to write r in between Sr is what? r at a time so that one should write it as

submission running over the tuples i1 ,…, ir, so this is running over i1 less than less than less

than ir. I can always order them according to the increasing order and write in that fashion.

All these polynomials they are fixed under the action of  Sn and they are called elementary

symmetric polynomials.
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Now the theorem says, so this is the theorem. This if you see the writings of Newton, you

already feel that you knew this and this is Newton and it must be around 1665-66, what does

it say? That the fix field of the operation of Sn on the rational function field in n variables this

is nothing but a field generated over K by this elementary symmetric polynomials, this is

what the theorem is, we will soon prove it. So this is also known as fundamental theorem on



symmetric polynomials. This is very-very important and later on I will use this theorem to

prove that the field of complex numbers is algebraically closed.

Let me also say that this inclusion is clear because all these are we know that all these S1 to

Sn are fix under the operation of Sn so therefore if I take any polynomial in S1 to Sn, they are

also fix under the operation of Sn and therefore, all the Sn functions are also fixed. So I also

should write that  K [S ] the ring generated algebra generated by  S1 to  Sn over K, this is a

polynomial this is also the fix Sn polynomial K [X1 ,…, Xn ]. And therefore why this theorem

is so fundamental because it explains all the polynomials which are symmetric. Now, when

do we say a polynomial is symmetric? You say a polynomial is symmetric if it is invariant

under all permutations of the variables.

So let us recall a polynomial f over K in many variables is called symmetric if f σ ( f ) equal to

f or every σ  in Sn. And what is the stigma of f, where σ ( f ) is by definition take a look at that f

and permute the variables according to that σ , so f is not changing under every σ . That means

this condition means orbit of every single term so we should also write it and I am going to

write in modern notation only.
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So f is symmetric if and only if orbit of f equals to single term f, and this theorem therefore

explains. So example of symmetric polynomials are all these polynomials from S1 to Sn are

symmetric and they are called elementary because they have got the definitions of S1 to Sn,

got by very elementary way that S1 is a sum, S2 is you take product 2 at a time and their sum,



S3 is product 3 at a time and their sum and so on, so they are they are called elementary

symmetric  polynomials.  And  the  theorem says  if  you  know this  then  you  know all  the

symmetric polynomials, they are precisely the polynomials in this S1 to Sn.

So you take any polynomial g and you take any polynomial in n variables g and you take g of

S1 to Sn, this is symmetric and precisely these are symmetric that is why their theorem is very

fundamental and will have lots of consequences. And one will also imagine that if you want

to set polynomials in n variables, this group operation is very-very important. And why was it

so important  to  consider  this  polynomial  also that  also I  will  explain  before I  prove the

theorem. Okay so before I prove, why is this so important to consider for the study of the

zeros of a given polynomial.
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So given any n natural number, a general polynomial of degree n is the polynomial f n, this is

by definition this is a general of degree n, so what do I write? It is a monic polynomials so X

is a variable, it is only in one variable (X − X1 )… (X – X n ) so think of this is the polynomial

over  f,  this  is  the  polynomial  in  X with  coefficients  in  where?  With  coefficients  in  the

polynomial ring in the remaining variables. But this one is containing rational function field

and the polynomial over there in X, so this is the polynomial of degree n it is obvious and the

coefficients I am considering this this rational function field.



And now when I expand it what do I get, when I expand it, when I multiply these products

what do I get? X n it is monic of degree n, the next coefficient is what? That is −S1X
n− 1, the

last coefficient alternating, last coefficient is (−1 )
n Sn so let me write it on the next page.
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So this polynomial is f n is X n−S1 X+...+(−1 )
rSr, this is n – 1, this is n – r and so on, the last

term will be (−1 )
n Sn, this is general polynomials. So if I want to study this polynomial f n, I

have to study the elementary symmetric functions because now what? If I want to find if I

know if we know the 0 of this polynomial then what will be the coefficient? So therefore, if

X1 ,…, X r are zeros of a polynomial f of monic polynomial that is like this, zeros of f, f is one

variable polynomial over some field I should write L from field L, this is of one variable

polynomial.

And suppose I know the zeros, they may be in a bigger field, these zeros may not be in L but

they may be in a bigger field say E then I know this but when I expand it what do I get? I will

get  X n and the next one will be  −S but this  S1 we evaluate at  X1 ,…, Xn that makes sense

because this is a sum and so on. Last term is (−1 )
n Sn we evaluated at X1 ,…, Xn. So this gives

you  a  relation  between  zeros  on  one  side,  on  the  other  side  elementary  symmetric

polynomials, right this correspondence. If I know the zeros, I know the elementary symmetric

function evaluated there and if I know those coefficients our problem is to relate them to the

Zeros, this relation was already known to Vieta. So simple case let me show you and that is

what we want to generalize now.
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So suppose I have a quadratic X2
+b X+c, so (X – x1 ) (X – x2 ), we have written this in a bigger

field, this was in a field K [X ] let us say then we have enlarged our field L K to L then we

have written  this  there ,  and what  is  the relation  between b and this?  So obviously  this

b=− (x1+x2 ), this is S1 evaluated at x1, x2, c is product of two with a sign so (−1 )
2 x1 x2 which

is S2 evaluated at  x1 x2. And then if you remember we were considering the discriminant of

this,  so discriminant  was what?  Discriminant  was  b2−4c,  it  was  a  discriminant  and our

school formulas depended on the square root of this discriminant.

So that means we want to study the discriminant also. Now this discriminant is what we can

write in terms of this s1 , s2 and so on, so we need to go on this arbitrary degree polynomial

and therefore we want to study elementary symmetric functions, we want to study symmetric

polynomials, this discriminant may not be symmetric so I want to do this more general setup

and to do that what is very very important is to consider the group action permutation group

on n letters on the polynomials in n variables and also rational functions.

And this  is  what  I  started  with,  we have  to  prove  that  theorem on symmetric  functions

Newton’s theorem that we have to prove. I will draw lots of consequences from that and I

will  also  define  a  discriminant  of  a  polynomial,  more  generally  I  will  define  given  2

polynomials how do you find they have a common 0 or not, to do that I will also define

resultant of 2 polynomials and the relation with zeros and so on. So this is what will go on for

a couple of lectures form now, so I will stop here and we will continue this in a next setup

thank you.


