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Inverse Galois problem for Abelian Groups

Recall that in the last lecture we proved that under the Galois correspondence of a a Galois

extension finite Galois extension, the Galois intermediary field extensions will correspond to

the normal subgroups of the Galois group of the original extension. We want to use this to

prove that every finite Abelian group will occur as a Galois group of Okay, Galois group of a

number field over ℚ that means what? That means I want to find a finite Galois extension of

ℚ such that the Galois group is the the given Abelian group and this problem is known as

inverse Galois problem, so let me mention it here to start with.
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 So this is known as inverse Galois problem, so given a finite group G… Question is, does

there exist a finite Galois extension L over ℚ such that Galois group of L over ℚ is precisely

the G or isomorphic, this is the problem in general. This problem is big problem and lot of

research is done to answer this  problem. It is  expected that the answer is yes and lot  of

research is done in this direction and which uses as per topology as per geometry and so

many other connections, also the theory of Riemann surfaces that is used in in this kind of

problem so it is to be very difficult problem.

And I am going to answer this partially very very special case of this we will prove today

namely if the given group given finite group is Abelian and I am going to construct finite



field extension L over ℚ such that the Galois group is precisely the given abelian group, so

this is what I want to prove today.
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So we will answer this, if G is finite abelian group, so remember what is more important is

Galois extension of ℚ rational numbers. If one allows Galois extension of arbitrary field then

we can always do it this, so I will show you in later lectures and what I am going to use for

this? The ingredients in this proof is the following; understanding the structure of a finite

abelian group that is one, we will use these 2 facts, one structure of finite abelian groups

namely If G is a finite abelian group, G is isomorphic to product of cyclic group. So G is

isomorphic to ℤn1
×…×ℤnr for some n1 to nr nonnegative integers positive integers.

So this is very standard but we will also prove this, and remember that when I write this

isomorphism, this  is  usually  we are writing  Galois  groups as multiplicity  group and this

notation here on the right side is additive notation, so that one has to be little careful. This 2nd

one 2nd ingredient I will use is, given any n∈ℕ nonzero natural number, we know that there

exists infinitely many primes prime numbers p with property that p is congruent to 1 mod n,

this we have proved as a corollary to when we were studying cyclic cyclotomic fields over ℚ

that time we have proved this and we will use it today.
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So let us now state it formally and prove it, so this theorem I am going to prove is. Let G be a

finite abelian group then there exist a field L which contains ℚ such that L over ℚ is a Galois

extension with Galois group is equal to the given G, this is what I want to prove, alright. So

proof,  note  that  we have  proved that  if  I  take  the  Galois  group of  the  cyclotomic  field

extension, this is isomorphic to ℤn
x, this is what we have proved and I am going to use this

fact also. So this is what, this is the 3rd fact we are going to use, alright.

So, remember that in the last lecture I have also proved that if I take the subgroups here that

is subgroups here and the intermediary field extensions, they are all they are in one-to-one

correspondence, the Galois correspondence I am going to use the Galois correspondence. So

what is that Galois correspondence which states that?



(Refer Slide Time: 9:27) 

So Galois correspondence, this is also we have checked so on one side intermediary field

extensions of the cyclotomic field extensions over ℚ and the subgroups of the Galois group

this, there is a one-to-one correspondence given a field extension in between here that is M

that corresponds to H Gal (Q( n)
∨M ) is clearly from here and how do you recover M from H?

This is the fixed field of H, this is it. So now the idea is the following, I have given a finite

group G so I have given G, I want to realize this as a subgroup here, this I know this Galois

group we know so this is same thing as subgroups of M.. mod n cross you need modular n.

So I want to realize this G as a subgroup here, once I realise that I will get hold of extension

M intermediary extension here so this will correspond to that M and when will M over K be

Galois that is what we have checked last time, M over K this extension is Galois that will that

if and only if the subgroup here should be normal but we have an abelian group so G is

always normal here. So this M over K will be a fixed field of this and the G will be realised

as therefore Galois group of M over K, so this is the fixed field of G of Okay n so that is how

I will do it.

So therefore our problem is, given a finite abelian group I want to realise it as a subgroup of

ℤn
x, once I do that I will use this Galois correspondence and that will give me a fixed field and

this fixed field is to check the fixed field over this is over  ℚ. This fix field is Galois over

Okay, to check that we would have to go back and check this G is normal but normally it is

obvious because our field extension our group Galois group of this cyclotomic field extension

is abelian so that is a plan. Now given G, I want to realise this as a subgroup of ℤn
x that is the



main step in the proof okay. So that is how I will use that corollary that there are infinitely

many primes.
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 So 1st of all my 1st step I know because G is a finite group, G is a product of cyclic groups

that is this, this I will prove after I finish this proof. So this I will prove, this is by this is the

structure  of  the  abelian  group finite  abelian  groups okay.  Now what  do the  second say,

second say that given any integer any natural number n1, I will find a prime number p1 so that

so given n1, n1 is a nonzero natural number so choose p1 prime number with the property that

p1 is congruent to 1 mod n1, but this is equivalent to saying n1 divides p1– 1 so that means

that means what?

That means if you look at this group so this is further this further implies, so if I look at the

group  ℤp1

x ,  this  is  a  cyclic  group and this  n1∨p1–1 means the cyclic  group has  a  cyclic

subgroup, subgroup of cyclic is cyclic always because n1 is the order of this group, there will

be an element of order there. So that means there is a cyclic subgroup of orders n1 inside this

group so that means this cyclic subgroup of order n1 is always isomorphic ℤn1
 that means this

is ℤn1
 is subgroup of this. 

This follows from this and the knowledge that this is cyclic so given any cyclic group and the

divider of the order of that group there is a cyclic subgroup of that order and every cyclic

subgroup of that order will look like ℤn1
 so therefore this. Now given n2, I want to choose a

prime  number,  choose  p2 which  is  different  from  p1 with  p2 not  equal  to  p1 and  p2 is



congruent to 1 mod n2. This I can do it because I know there are infinitely prime numbers

with this property therefore this is only one and I choose a different one now, I want to avoid

this p1. And this is equivalent to saying again n2 divides p2– 1 and that will mean that ℤn2
 is a

subgroup of ℤp2

x , same argument as before and I keep doing this to this given n1 to nr.
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So therefore I have now further number nr we find prime number pr prime which is different

from earlier chosen primes pi, i is from 1 to r – 1 with the property that pr is congruent to 1

mod nr, this is possible because we had proved earlier that given anyh natural number n there

are  infinitely  many  primes  so  that  p  is  congruent  to  1  mod  that  natural  number.  This

congruence is equivalent to saying that nr divides pr –1, so this means in the cyclic group ℤpr
x ,

this is a cycling group of order pr –1 and this nr is a divisor of this so it has a subgroup of

order  nr so that is also cyclic because subgroup of the cyclic group is cyclic again that is

additive notations so this this goes inside this.

Now, let  q i be the number 
p i – 1

ni
, we know ni divides pi – 1, this is for i = 1 to r. And now

since ℤpi
x  this is the multiplicative group of a finite field which is we have proved it is cyclic

of order  pi– 1 and  q i divides  pi– 1 therefore, there exist a unique subgroup  H i of  ℤpi
x  with

cardinality of H i is precisely q i, this is for i = 1 to i. Therefore what do you get, this  H i is



subgroup of cyclic group therefore H i is also cyclic and then we know that ℤpi
x H i this will be

cyclic of order ni precisely because 
p i – 1

qi
 is precisely ni so this is ℤni.

This is because since ℤpi
x H i is cyclic of order ni therefore this any 2 cyclic groups of the same

order or isomorphic so therefore take this.

(Refer Slide Time: 20:31) 

Now you look at  ℤp1

x  to  pr,  p1 to  pr are the primes we have chosen,  this  is  by Chinese

remainder this is isomorphic to ℤp1

x × ...×ℤ pr
x , this is by Chinese remainder Theorem. So this

proves what? This proves that this proves that ℤn
x… n is this product of distinct prime. So this

modulo H n cross cross H r this is isomorphic to  ℤp1

x H 1× ...×ℤpr
x H r , but this is precisely

ℤn1

x × ...×ℤnr
x  this is precisely our group G given group G. So we have proved that for a given

abelian group is isomorphic to the quotient of  ℤn
x for sum n that is what we have proved,

where n is product of these distinct primes.

So and remember what we want to do is, we want to find an abelian extension and we want to

find a Galois extension of ℚ with precisely Galois group G. So now you take you have got

hold of this group H, this is our group H which is a product of this group which is a subgroup

of ℤn. So let Q (n) over ℚ this is a cyclotomic field extension of ℚ, these are precisely Q (n) is

precisely ℚ [ζ n ] where ζ  is the root of unity and in that we are taking M to be the fix field of



we know that the Galois group of  Q (n) over  ℚ this Galois group is precisely  ℤn
x and in this

there is a subgroup H so we can take fix field of that.
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So let M be the fix field with respect to H of this Q (n) and this M is intermediary field and I

want to prove now that M over  ℚ is Galois extension with Galois group  Gal (ℚ (n )∨ℚ )H

which is nothing but ℤn
xHwhich is the given group G. So we have to justify this is a Galois

extension with Galois group, but that is immediate because we know this ℚ(n) over ℚ, this is

an abelian extension abelian with Galois group  ℤn
x and H is subgroup here therefore H is

normal in ℤn
x because it is abelian. And therefore we know that this is what the criteria for fix

field H Q (n) over ℚ is Galois with Galois group ℤn
xHwhich is our given group G.

For this we have used Galois correspondence, namely the normal subgroups will correspond

to the Galois sub extensions. So that proves that given any finite abelian group we have

Galois extension of ℚ for which the Galois group is the given abelian group so this was part

of the inverse Galois problemh for finite abelian group. Here one can also invoke the big

theorem structure  of  finitely  generated  abelian  group  but  in  this  case  we  did  not  really

necessary and the proof is really simple so I want to indicate this proof so alright, so the

theorem I want to prove that theorem
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This is structure of finite abelian groups, so let G be a finite abelian group. Then G is a direct

some, remember because we are dealing with finite direct sum so G is a finite abelian group,

finite direct sums and finite direct products they are same. Direct product of finitely many

cyclic groups, this is what we want to know alright. So that means all the cyclic groups will

be isomorphic to ℤn1
, ℤn2

, et cetera therefore that proves our assertion that we had assumed so

I have to  prove this.  So proof alright,  this  proof is  very interesting  proof,  this  is  due to

Schenkman. There is a very nice book by Schenkman group theory but it is little unusual

book because it is quite difficult to read.

Alright so because G is a finite group, chose a natural number n such that G is generated by

these elements x1 to xn. If G itself is cyclic than I could choose n = 1 and G is cyclic and we

have nothing to proof. So we could always we could assume that n is at least 2 this is we

went as you alright so G is generated by  x1 to xn. Now I am going to choose the generating

sets so choose among all generating sets  x1 to xnof G, choose one with n least possible. There

may be many generating sets, among them you choose the one which has the least number of

elements okay.
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 Now among them choose one such that the first element such that x1 say is of least order. So

we have this we have chosen a generating set which are n elements and n is at least 2 so look

at the generators x1, x2, etc so on, you get their orders so one of them will have the least order

and among all the generating sets we have chosen, choose the x1 which has the least number

of orders. So the order of x1 which is let us call this as m least, right. So G is generated by x1

to xn and this one has order m and this one is the least.

Remember, according to our convention of order of an element, order of an element is always

a  positive  nonnegative  integer  and  in  this  particular  case  because  G  is  a  finite  group

obviously the order of all elements are positive, no elements will have order 0. Remember

order 0 means the subgroup generated by that has the infinite order, which is not possible

here because G we are working and she is a finite group only alright. And what do we want to

prove? We want to prove that G is direct sum of cyclic groups so I want to, let H be equal to

subgroup generated by x2 to xn, this is the subgroup of G generated by x2 to xn alright.
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And I am going to prove the assertion so what assertion? We are going to prove, we will

prove our assertion by induction on the order of G cardinally we have G, this is the order of

G. What assertion, that G is a direct finite direct sum of cyclic groups, this assertion I am

going to prove it by induction on the order. Now remember that this the H the subgroup H, H

is a subgroup here and what we have dropped is the element of least order and that is that

cannot be so the least order element x1 order is x1 is m.

This least order m element cannot be identity because if it were identity element then our set

is not a minimal generating set for G but we have chosen first a minimal generating set and

among them the orders of the generators, then order of x1 is the least element so therefore this

m is  positive  and therefore  this  cardinality  of  H is  strictly  smaller  than cardinality  of G

because x1 is not in H and therefore the theorem is true for H therefore H is a direct sum of

cyclic, H is a direct sum of finitely many psychic sub-groups. This is induction hypothesis

therefore if I prove that the G is direct sum of cyclic group generated by x1 direct sum H if I

prove this so this is what we will claim.

If I prove this claim then we are done because this is cyclic already by notation, this is cyclic

group generated by x1 and H is the direct sum of cyclic finitely many cyclic subgroups so G

will be altogether direct sum of finitely many cyclic subgroups so G will be altogether direct

sum of finitely many cyclic subgroups so only I have to prove the claim.
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So proof of the claim, this is proof of the claim. So I have to prove 2 things; G is the sum of

these  2  groups  and  I  have  to  prove  that  they  do  not  intersect  other  than  identity.  ⟨ x1 ⟩

intersected with H is only the identity element which I am denoting by 1, this is what I have

to prove. So this one is obvious because H is generated by x2 to xn and G is also generated by

this is same thing as generated by x1, x2, ... , xn, this was given to us already we have chosen

like that so I have to prove only this. So let us take element which is common so let us take z

belongs to here and we want to show that this z is actually 0 element, this is what we have to

show.

So look at z, on 1 end if z is nonzero we should get a contradiction. So on one end z is a

multiple of  x1. Oh I have written the groups as additive groups so therefore this identity I

should write it 0 not 1. So if z was nonzero, on one end it is a multiple of x1 so z will be a1 x1,

adding x1 cyclic so group generated by x1 means adding x1a1 times. On the other hand, it will

also be an element of H so it will be a z linear combination of elements from x2 to  xn, so

a2 x2+ ...+an xn, where a1 , a2 ,… ,an they are integers, alright.

Now let us take d with a GCD of integers  a1 , a2 ,… ,an and divide, so once I take this then

what do I get?



(Refer Slide Time: 38:32)

Let us call g element g which is by definition and I am writing it as –… I want to shift this

term to this side so that will become –
a1

d
x1+

a2

d
x 2+ ...+

an
d
xn, consider this expression this is

an element in the group g, alright. And if I multiply by d what happens, that means if I add g

d times  what  happens,  d  times  g is  nothing but  – a1 xn+a2 x2+ ...+an xn,  this  element  is  0

because we have taken this as z and then I have subtracted, this is 0 that means what? That

means the order of this element g what can it be? 

It has to be smaller than equal to d, this is smaller than equal to d, this is smaller equal to d

and d is smaller equal to a1 and a1 is strictly smaller than m because z is a1 x1 and this m is

order of x1 so therefore this a1 is bigger, then I could always reduce it to the smaller element

so therefore we have this  a1 is  smaller  than this  and order of g is bigger equal  to 0. So

therefore, I found an element g in the group g whose order is strictly smaller than that m, so

now if I could check that if I could check that there is an element with.

If I can find a generating set with g here, g is y1 , y2 ,…, yn, if I can find such a generating set

I will get contradiction to our choice of generating set where one of the elements has order

strictly less I found, so we claim that now. We claim that there exist y1 , y2 ,…, ynin G such

that this is a generating set for G, which will contradict our choice of that m, m is the least

among all the orders of the elements which the generating set for G. And what is this? This is

very simple, I have will just treat it as a result and then one can prove it very easily, so the

result is the following which follows from the following.
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This follows from a simple fact,  so what is  the fact?  So that  is  I  want to write  it  as an

exercise. Let G be finite abelian group generated by x1 ,…, xn and let a 1 to a n are integers

such that GCD of a1,…,an is 1, then there exist y2 ,…, yn in G such that G is generated by 1st

element is this linear combination a1 x1+...+an xn, y2 ,…, yn, this is G generated by this.
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So that is precisely what we wanted to prove because in our case G is this linear combination

and GCD is 1 because G is GCD of a1,…,an and therefore the GCD of this coefficient is 1

therefore I will find a generating set where G is one of the elements that is what we wanted to

claim. So this is a very simple exercise, this follows from the fact that when you have n

integers,  if  the  GCD  is  1,  1  is  a  linear  combination  of  those  elements,  1  is  z  linear



combination of  a1 ,…,an that is precisely the minimum GCD is one. So using that one can

prove this exercise very easily by induction on m, so I will leave that proof for you to check

and with this I will end this lecture and in next we will continue our discussion on the Galois

groups in the next one. Thank you.


