
Galois’ Theory
Professor Dilip P. Patil

Department of Mathematics
Indian Institute of Science Bangalore

Lecture No 41
Correspondence of Normal Subgroups and Galois sub-extensions

(Refer Slide Time 00:25)

So last lecture we have observed some basic facts about the invariants 
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of a subgroup, invariants of a subset when a group G is operating on the bigger set. And we

want to apply those observations to our case when a Galois group is operating on a bigger

field. So let us recall what I want to do.



So we have a finite field extension L over K. This is finite Galois extension. 
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And so we have a group attached to that, that is the Galois group and 
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we have given a normal subgroup H, H is normal subgroup, normal in this. So remember the

notation was like this. This is a normal subgroup, it is a subgroup 
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and it is normal. 

Then I want to study the fix field. So that means FixH L , this is M, this is a subfield of L 
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and I want to consider this M over K. It clearly contains K 
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and I want to prove that this extension is Galois. So to prove M over K is Galois extension. 
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In fact I want to prove if and only if. So first I will prove this is Galois and second I will

prove that assuming this is Galois, I will prove this subgroup is normal.

So now H corresponds to this field extension, this field M. 
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So we want to prove M over K is Galois if and only if H is normal. So I am only proving the

first part. So assuming H normal I want to prove M over K 
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is Galois extension. And what do I want to prove? 

So  that  means  we  want  to  prove,  we  want  to  prove  the  order  of  the  Galois  group;

Gal(M∣K ) , this order is nothing but the degree of M over K. 
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This is what we want to prove. This is what 

(Refer Slide Time 03:19)

we are heading to prove assuming H is normal, alright. 

So here is what we have a situation. So when will H be normal? When H is normal, we know,

we know from the observation from group actions, observations from group actions tells us 
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that if I want to check that, Ok so I want to check that, so  ~
H , this is the kernel of the

operation on G, we know that G operates on the fix field of H. 
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This we have checked that this is a fix elements of L under the action of H and we checked

that this, because H is normal this fix H is invariant under all action of G and therefore we

have a group homomorphism from G to this and the kernel 
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of this group homomorphism is because, this kernel, so I want to check that 
G
H

 operates

faithfully on FixH L , this we know 
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if and only if H equal to ~
H . 

This is the observation 
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from the group action we have made it, because H is normal, Ok. But if I, if I know that H

equal to ~
H , do I, if I know this equality then I will know that 

G
H

 operates faithfully

on this fix field. 

But I would say, if I want to, I want to check this, but H equal to ~
H  because, see I want to

prove the two sets 
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are equ/equal, two subgroups, these are both subgroups and I want to check that they are

equal. 



So I might check as well that their fix points are same. So this is because  FixH L  and

Fix~H L , if I take both these are equal 
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then fundamental  theorem of  Galois  theory  will  tell  you if  fix  points  are  equal  then the

subgroups are equal. So this will be, this is what I want to check. 
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This implication I want to check. 

So to prove, to prove FixH L  is same thing as Fix~H L , this is what I want to prove. 
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But  what  do  we  know?  We know that  H is  always  contained  in  H ’ .  Therefore  this

inclusion, H is smaller subgroup. Therefore fix field is bigger. Therefore this is clear, this

inclusion is clear. 
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To prove the other inclusion I will take an element here and prove it is here. So let x be fix

point of 
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L under H, then I want to prove that, so I want to prove that it is here. That means I want to

prove that for any ~σ , so to prove, for every ~σ , ~σ  in ~
H , to prove for every ~σ

in ~
H  I want to prove what? I want to prove that ~σ  of x equal to x. 

Then it will be here. 
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So that is, then, that is x will belong to Fix~H L . This is what I want to prove. But 
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I have given that ~σ  is in ~
H . What does that mean? That means this ~σ  belongs to

the kernel of the map of G to the permutation group on FixH L . This was, 
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~
H  was a kernel of this. 

So and what does the kernel means? That means ~σ  should go to, ~σ  here, identity but

this is ~σ  is going to ~σ  restricted to fixed points of H in L, this is identity on fix points

of L with respect to H. 

So 
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that means on every element of this, it behaves like identity 
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but that simply means that ~σ  if I evaluate on an any element here and in particular this x

is there, 
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therefore this is x. 

So that proves this equality 
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and that proves that this equality of the field extension and 
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therefore by fundamental theorem of Galois Theory that shows that H equal to ~
H . This is

very important. 
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This is where we are using F T G T. 
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So what we proved is their fix point with respect to H and  ~
H  are same. Therefore by

fundamental theorem of Galois Theory, H equal to  ~
H . And we have observed that this

fact, two fixed 
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fields are equal, that is equivalent to saying that H equal to ~
H  
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and H equal to ~
H  is equivalent to saying 

G
H

 operate faithfully on the fixed point set. 

So  therefore  what  we  proved  is,  therefore  H,  not  H,  
G
H

 operates  faithfully  on  this

FixH L . 
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Now let us recall what does this faithful action means. I, remember I want to conclude that

this field is Galois over K. This is what I want to conclude. So coming back to understand

what does the group operation faithful means? 

So let us take in general, G is a group and suppose this operates faithfully on a set X. That

means 
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by definition, the group homomorphism from G to S (X )  is injective. 
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Faithful means the action of, the kernel of the action of the group homomorphism is a trivial.

So that means the group homomorphism is injective. So this is injective. 

So therefore if I take any element g in G, where does it go? It goes to theta G, theta G is the

multiplication on that set X. 
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This is g going to, x going to 
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g x. this is the bijective map we know, and 
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this G, so when g is not identity in the group, so I will denote identity by 1 without 
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much fuss, so this g if it is not identity then this is definitely not identity. 

Because no non-identity elements will go to identity element because the kernel is trivial, so

if g is not this then this theta g cannot be identity map of X. 
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So, but then what is theta g? So that means equivalently this map from x to x is inject, the, the

not-identity that means if I take this map from G to G, G to S (X ) . So that means 
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g going to S (X ) . So that means what? 

I want to write in terms of the orbit. That means 
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if I take any x and orbit of x, we have a natural map 
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from G to orbit of x, 
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namely any g going to g x, this map 
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is a bijection 
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because 2 different gs cannot map to the same. So that means the orbit is the full orbit. 

That means that, that the action faithful means, Ok, so that means that the cardinality, so I

want to check that this is now equivalent to checking that what happens to the fix point. So

that means we know L over K, this degree we know. This is degree of L over M, this is

degree of M over K. 
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But this M over K, I want to shift this to that side. So that means L over K divided by L over

M, this is M over K. 
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And this means what? Now the other side, this side I know. This means the cardinality of the

Galois group of L over K divided by cardinality of Galois group of L over M, this cardinality

is same thing as M over K. 

(Refer Slide Time 14:18)

And I want to check what?

I want to check that this is what we are looking for. This is what we want to check, that 
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this is the cardinality of Galois group of M over K. Now all that we know is, this less equal to

this, we know. But we want to check equality 
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here. I know this side. This is our H. So this is cardinality of Gal(L∣K )  and modulo H,

cardinality of H. But this is same thing as, 
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this is same thing as cardinality of the 
G
H

.

Remember we are 
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assuming H is normal therefore this is actually a group. And what do we want to check? This

cardinality equal to the cardinality of this, this is what we want to check. But we will check

that this, this action is faithful is equivalent to saying this equality here, this equality. This is

because if and only if 
G
H

 operates faithfully on fix H. This is our M in the notation. 
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Because it operates faithfully the degree, the dimension will be equal to the cardinality of this

group because this is precisely the orbit. So that follows, therefore, therefore we have proved

the assertion that, we have proved, I will just recall. We proved 
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H normal implies, implies M over K Galois. M is the fix field of L with respect to H. 
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This implication we have proved. 

Now we want to prove the other way, namely if M over K is a Galois extension then the

corresponding subgroup is normal. This is what we want to prove. And the corresponding

subgroup is what? It is, so we are given M over K. So this, what is the correspondence? H

corresponds to FixH L  
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or if I have M here, that corresponds to whom? Gal(L∣M ) . 
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They  correspond  to  each  other.  So  this  is  the  correspondence.  This  is  under  the  Galois

correspondence. This is precisely the Galois correspondence. 
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So we have proved that if H is normal, this fix field is Galois over K. Conversely I want to

prove that if this subfield, intermediary field M is Galois over K, so I want to prove M over K

Galois then I should prove that this subgroup Gal(L∣M )  is normal in the Galois group L

over K. This is what I want to prove. 
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Alright, so we will prove that. So now we will, we have given, so let us recall what we want

to prove. So we have given L over K finite field extension, finite Galois. And we have given

a intermediary field 
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and we have also given that M over K is Galois, that is given. 

That is equivalent to saying the cardinality of the Galois group Gal(M∣K )  this is equal to

degree M over K. And degree M over K 
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is same thing as degree L over K divided by degree L over M, this is what we have given.

This equality we have given, 
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this is given therefore we have given this. What more things we have given? We have given

this is Galois. L over K is Galois. So this means it has a primitive element. We have proved

that we have a Galois extension. 

Then M over K has a primitive element, has a primitive element. Let us say y∈M . So that

means 



(Refer Slide Time 19:30)

we have given that M equal to K y, the smallest subfield 
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or the smallest K-algebra which contain y. So we have given this equality. That is all we have

given.

And what do we want to prove? To prove, we want to prove that the corresponding field

extension, this group is normal in Gal(L∣K ) . This is what we want to prove because 
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this M corresponds to this subgroup. This is what we want to prove. 

So once you understand what needs to be proved, things are easy. So we want to prove this

subgroup is normal here, alright. So that means what? Alright, Ok so that means that I want

to check that what do we want to prove? That is Ok. First of all, note that that, first of all note

the following. 

That, for every σ  in G I want to check that, that implies σ  keeps M invariant. This is

what I want to check. This I want to check from the assumption that M over K is Galois. Ok,

so to check this it is enough to check, so this is what I am checking; 
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it is enough to check that σ  of M is contained in M. 

Because once I check σ  M is contained in M 
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then also this is valid for σ
−1  because we are checking it for every, and then when I apply

σ
−1  then M will be contained in, so it is enough to check this. 

Or in other words the degrees of this over K are same. So once you check this that is enough

because this is another field whose degree will not change. So it is enough to check this. And

to check this, it is enough to check, enough to check σ  y is in M. 
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Because σ( y)  is in M, because y is a primitive element, so  will b σ( y) e a primitive

element of, so it is enough to check that σ( y)  belongs to M, alright. So this is what I want

to check. But remember that we have given the formula for the minimal polynomial of Y. So

remember that minimal polynomial of y over K is nothing but a product, product is running

over the orbit of y now, G y X−z . 

This is the polynomial in K [X ]  
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and, and this is the minimal polynomial of the element y over K. And we have given that M

over K is Galois. And remember this M is a, this y is a primitive element for this. So when

we have analyzed 
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when the simple extension be Galois, we only have to check the minimal polynomial should

split into linear factors over K and into simple, simple linear factors over M.

So this polynomial, we know this splits into simple linear factors in M of X. We know that. 
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That is because this is Galois; this M over K is Galois. 

Therefore this minimal polynomial splits into simple linear factors in this. In particular all

elements in the orbit of y, they are there because this polynomial has, this is the product of

mu into the linear factors. All these linear factors should lie in M, M [X ]  and all of them

should be different. 



But that will mean that all, all elements in the orbit, they lie in M but σ( y)  
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is one of the, so one of the element in the orbit and that is true for every σ  because all the

orbit elements are here. Therefore for all σ  in G, 
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all these elements they lie in M but that we know that is equivalent to saying σ  of M is

contained in M and that is equivalent to saying that σ  of M equal to M actually. 

So that shows that, what do we want to show? That means the whole orbit is contained in y

but that precisely means the group is normal. Because what is the group then? This is the



group, Gal(L∣M ) . I want to show that now this follows that this is normal in this. So how

do you prove it is normal in this? 
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It is very easy.

So it is a subgroup and we have an injective map here L M to Galois L over K, and, so this is

injective map 
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and we have given a map. So any σ , we have checked that any σ  if I take 
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and restricts to M, it maps M inside M. So that means I have given a map from L over K

modulo 
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or directly Gal(L∣M ) , L over, M over K and this map is 



(Refer Slide Time 26:09)

σ  going to σ  restricted to M. 

This makes sense. It is a homomorphism from M to M. It is algebra homomorphism from M

to M. That is what we have checked 
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for every σ  in the Galois group of L over K, if I restrict that to M, it goes M inside M and

therefore it is an algebra automorphism of M. So that means it is an element in this Galois

group. 
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And when will this be identity? So what is the kernel of this map? Kernel of this map is

precisely this subgroup. So this subgroup is therefore kernel of the restriction map. This is a

restriction map. Kernel of Gal(L∣K )  to Gal(M∣K ) , 
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this map is any σ  going to σ  restricted to M. That makes sense because 
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this extension is Galois extension. That is what we checked.

And kernel is precisely this one. And that shows that this is, so that proves that Gal(L∣M )

, it is normal in Galois group of L over K.
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So we, remember that how do we check some subgroup of group is normal? That is if and

only if it is kernel of a group homomorphism. Therefore it is normal. So we have proved

altogether the statement, the normal subgroup will correspond to the Galois extension, Galois

extension, Galois subextension will correspond to the normal subgroup. 



So we have improved the Galois correspondence little bit better  because we know which

normal  subgroups,  where  do  they  go?  Or  in  other  words  when  the  Galois,  when  the

intermediary field extension is a Galois extension. So we will  continue this improvement

more and more and that will enhance our understanding of the Galois groups using the Group

Theory. 

And that is what the main aim of this course is, to understand Galois extensions by using

Group Theory. And conversely understand Group Theory by using Galois extensions. And

then we will concentrate on the polynomials and the zeroes of the polynomials. 

So polynomials will give us Galois extensions and Galois extensions will give us a group and

then we will try to extract information about the 
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of the polynomial by using the Group Theory. 

So this is what plan is. We still have many more steps to go. But we will try to accumulate as

much as possible, thank you.


