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In the last couple of lectures we have been studying Galois groups of some examples of 
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field extensions which are Galois extensions and particularly last 2 lectures we have spent on

studying roots of unity in a extension of ℚ  and also in a extension of finite fields. 



So just let me roughly recall  quickly that what we studied was, given any integer natural

number n positive then we were 
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studying this equation, roots of this equation Xn−1 .

So we have two cases, either characteristic 0, characteristic 0 case that is think of this as a

polynomial in ℚ[X ] . That was the case 1. 
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Or think of this as a polynomial in the finite field with q elements. 

And then 
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we consider in both the cases, in the first case the splitting field, that I have denoted by ℚ

upper bracket round bracket n, this is the splitting field of this polynomial over  ℚ . We

have checked that 
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this is a field extension of degree Φn  where ϕ(n)  is Euler's phi totient function. 

And the Galois group, the Galois group of this extension is isomorphic to the unit group of

the ring of 
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integers modulo n. This is what we proved. 

And this is, we also in-between we proved that this is a Galois extension. So in this case the

Galois group is actually the abelian group. It is the abelian group of order  ϕ(n) . This

group we have identified it as that, the roots, the roots of unity in, in ℚ
(n) . 

This group is cyclic group of order n and automorphic group of that
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cyclic group is precisely ℤn
x . This is what we are giving the identification. So that was a

characteristic 0 case. And character p case we know that if you have a field with q elements F



q  and  we  have  to  assume  now,  without  loss  we  could  assume  this  n  and  this  q  or  p

characteristic, this is co-prime. 

q is a power of prime, q is pe , 
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p is a characteristic and then we are looking at the splitting field of this polynomial Xn−1 ,
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Xn−1  and  this  polynomial  is  now,  has  simple  roots  because  we  are  assuming  this

condition 
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and therefore this extension is Galois extension. 
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This is Galois and we already know finite extension, of a finite field is always cyclic, so this

is Galois extension with Galois group cyclic, this is cyclic and this is only 
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a subgroup of ℤn
x . 

So 

(Refer Slide Time 04:18)

the order of this Galois group we computed,  the order of the Galois group, order of this

Galois group which is also order of the field extension, this order is precisely the order of the

integer q in the group ℤn
x  
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So that is also, I denoted by order of q in mod n, in a multiplicative group. 
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So we have fairly good understanding of this field extensions. Now I want to go on further

little more intricate results which will tell us about which groups occur as Galois groups. 

This is still vague. I will make it more and more precise when we go on. And we want to

therefore, extend or do more finer study about the Galois correspondence. So let me recall

quickly what is the Galois correspondence we did. 

So this was a main theorem; that was a fundamental theorem of Galois Theory. So that I will

abbreviate always as I said also, F T G T, this is the fundamental theorem of Galois Theory. 
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And what we proved was when we have a field extension,  we did it only for finite field

extension and if time permits in this course I will go on to more general field extensions. Not

even I do not even want to; I will assume that it is an algebraic extension, not even finite etc.

But that will come probably at the end or if not, it will be in the further next course, alright.

So we have a  field  extension L over  K,  finite  field  extension,  finite  field  extension  and

remember we called 
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it Galois extension. That was the definition was, that was the degree of the field extension

equal to the order of the Galois group, Gal(L∣K ) . 



In general, the degree of the field extension is bigger equal to
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but when the equality holds we call the extension to be Galois extensions. We also proved

that, so this is the equality; that is when 
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you call the extension to be equal to be Galois extension. 

We have also checked that this is equivalent to saying that the, the fixed points of the natural

action of the Galois group on the field L; this fix point is the base field. This is also we have

proved. 
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So this is purely a numerical condition that order equal to the degree. This is not numerical

condition but it is the, it involves the action of the Galois group. So the whole Galois Theory

centers around studying the action or operation of the Galois group on the field L and this is a

very natural action. 

So the 
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action is given by, if you have an element in the Galois group σ  and element in the field

L, x that goes to σ  evaluated at x. 

And 
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as you see I will, today also study this action more carefully. Not just the basics but I will go

little bit more deeper. So what is the Galois correspondence? Galois correspondence, so this

is, I will keep referring these two Galois correspondence. 

This is, these are the bijections between the intermediary 
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fields, intermediary fields of L over K that means they are subfields of L which contain K on

one side. On the other side, the subgroups of the Galois group, these are the subgroups and

we have given the map, one in this direction and the other in this direction. 
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So this map is the, if you have a intermediary field M, then you just map it to the Galois

group of L over M. This is clearly a subgroup 
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here because these are only M linear  maps and these are all  K linear maps.  So this  is  a

subgroup here. So it makes sense. 

And this map I have denoted by, let us call today just G(L∣−) . 
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And this way map is a fix map. So this map is fix. So that is, given any subgroup H, given

any subgroup H we mapped it to the fix field of H which is a subfield of 
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L clearly. 

These are all fix points of all elements of H. So this correspondence we have checked that,

they are inclusion reversing. They are bijections and not only they are bijections, they are

inverses of each other. 

Now for example, now 
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this also shows that, I am going to ask more questions regarding this correspondence. So for

example, I know if we have a intermediary field then we can talk about its degree over K, M

K 
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and also we can talk about the, the, this subgroup H, this is H. This is H. 

So what is the relation between degree of M over K and H? So it is easy to see that this one

will correspond to the index of the subgroup H in the Galois group. 

This we have, this is index, 
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this whole double dot H. This is the 
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index  of  H  in  the  subgroup,  in  the  bigger  group,  the  Galois  group  of  L  over  K.  They

correspond to each other because 
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we know that this is easy. I will just write the proof here in one line. 

We know, because L over K Galois, 
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L over M is also Galois, this we have checked. 



(Refer Slide Time 11:47)

Degree of L over M, this is equal to the cardinality of the Galois group of L over M. 
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And degree of L over M and degree of L over K, what is the relation? 

Degree of L over K, this  is  degree of L over  M times degree of M over K and we are

interested in this number. 
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This number I know, this number also I know, this is cardinality of Gal(L∣K ) , and this is

cardinality of, cardinality of L over M. And this is what we want. 

So therefore 

(Refer Slide Time 12:35)

the degree of M over K is nothing but the order of L over K divided by order of L over M.

This is 
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precisely the index of L over M in the group L over K, Galois group of L over M. But this is 
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what? 

The correspondence is this is the corresponding group H. Therefore what we noted is when

you have intermediary field, 
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and the Galois 
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group, this, the information about M, particularly the degree of M over K, 
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that is the index of the Galois group of L over M in Galois group of L over K.

So we have this extra information. Now I want to also ask questions. If H is some special

group, some special subgroup or subgroup which has a special property, for example H is

normal then what can you say about that intermediary field? 

How  do  you  read  that  normality  of  a  subgroup  in  terms  of  the  intermediary  field?  Or

conversely we do not know in general, in general it is not true. We will see by example that

M need not be Galois extension of the base field K. 
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All we know is L is Galois over M but we do not know whether M is Galois over K. 



And in general it is not true. We will see these by examples but then we can ask when exactly

M over K is Galois extension? So that in terms of the group, so we will check, we will have

some results which connects group theory and intermediary fields in a more intimate way. 

So right now I want to assume, so the result I am aiming at, suppose H is the subgroup of the

Galois group, Gal(L∣K )  and 
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we assume H is normal, normal in G Galois group of L over K. 

So in general, 
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we will have to, I will recall, in general let us recall if G is a group, and H is a subgroup 
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when do you 
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call the subgroup to be normal? H is called normal. 
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So we have given a subgroup H. So we have given G, this is subgroup of G. And we have

given the cosets, so left 
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or right cosets. We will concentrate on the left coset. So this is the set of left cosets. 
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And one would like to know when will the 
G
H

, the set of cosets when will it be a group

again in such a way that we have a natural quotient map here. 
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This quotient map is very clear. Any element g in G that goes to the coset of H defined by 
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that g H, all those g times H as H varies in the subgroup H. So this is the quotient map.

So we would like to know when can we put a group structure on the cosets so that this natural

map, this canonical map, let us call it π , when this 
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is the group homomorphism? And that is if and only if, what do we know? 

We get the group structure, here will be nothing but (g H)(g’H ) , this will be defined by

(gg’)H .  And  if  you  want  to  define  this  we  have  to  check  that  this  definition  is

independent 
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of the representative g and g’  of this cosets.

But that is equivalent to saying that subgroup H is normal. So this is well-defined, that is if

and only if H is normal. 
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When you want to write down this more precisely, or more transparent way that is equivalent

to saying, so equivalently H is normal in G, if and only 
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if, for every element g∈G  the conjugate subgroup gH g−1  is H. 
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Then we say it is normal.

So many people will take this as a definition. So this as a definition but that is equivalent to 
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what I said, that is more appealing, saying that when will the quotient g will be a group in a

natural way so that the quotient map is a group homomorphism. 

So that is normal. Now our problem is the following. We have a subgroup H which is, and

normal subgroup is usually denoted by this notation, this instead of only this. So H is normal

in the Galois group, normal and I will prove that 
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this normality is equivalent to saying this H corresponds to the intermediary field M so this

H, so that is fixed, fix L this, this is our M. This is Galois over K. 

So that means 
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under the Galois correspondence normal subgroups will correspond to Galois subextensions.

That is the theorem we want to prove. And obviously this involves studying group actions

more intimately and that is what I want to digress. What is this condition? When will this H

be nor/ normal, when H is normal what happens to the fixed field? 

That is what I want to analyze now. So this is a digression on the group actions. So this is

digression on group actions.
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And we will  apply  these  results  to  our  situation  of  the  field  Galois  field  extension  and

subgroup of that. This is what we are planning to do.



But before that we will understand little bit group actions in a more detail. So let us take in

general, let X be a G-set. That means you remember, that 
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means X is a set and G is a group. And G is operating on X. 
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So the operation is the fixed operation, that is written like that, 
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any g in G comma x that goes to the element g x. This is our notation. 

(Refer Slide Time 20:31)

So this is the operation of the group G on X.

Whenever such a thing is given and suppose H is a, H is a subgroup, H is a subgroup of G.

And suppose H is normal. 
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That is given to us, alright. Now what do I say? And let us denote also the set fix H X, these

are only the fix points of X with respect to H, that is these are all those points x in X, all those

elements x in X such that h x equal to X for all h in H. These are the fix points 
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with respect to H. 

And I will also denote this fix point set by X H . This is not a good notation but today I will
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denote this. When there is no confusion we will denote this. Otherwise we will usually denote

it by this, so X H . So this is a subset of X. 
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so first observation I want to denote is, so observe that, so let me write the proposition. So

proposition, 
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with the notation as above, the first one X H  is invariant under G. What does that mean? 

That means if I take any, any element of G and apply 
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to any element of X H  then it will come back again in X H . So that is, that is for every

σ  in G and every x∈X H , σ  of H again lies in X H . 
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Alright, let us finish off the proof now only. So that means I want to prove this. So I want to

prove this means what? This is what to be proved. 
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So that means given any element, I want, that means this element σ( x)  is invariant under

all elements of H. 

So that is, to prove, if I take any τ∈H , τ (σ(x ))  should be σ( x)  only. This is for

every τ
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I have to prove, alright. But tau is in H and we are assuming, remember H is normal. That is

what we are assuming. H is normal in G. 
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So tau is in H but H is also same thing as the conjugate subgroup this. 
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So therefore every tau is also an element of this. So that is tau I can write, so that means I

multiply  σ  from the, this side so that is tau  σ  becomes to the coset  σ  H, so that

means 
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τσ  will be an element of this coset, so that will look like σ~τ  with ~τ  belonging to

H. 
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And now what do we want? I want to check that this element is σ( x)  only. 
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This is what we want to prove. So start with, apply, evaluate both sides on x. So τ  σ

evaluated at x, this is what we are interested in. 

This is same thing as σ~τ  evaluated on x but this is σ~τ  of x but 
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~τ  is in H and this x was element in X H  that means x is invariant under all elements of

H, 
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in particular of ~τ  so this is σ  of x, this is what we wanted to prove. 

So we have proved this. So that means we have proved that X H  is invariant under G. 
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This is a subset which is invariant under G. So that means this G operates, so therefore G

operates on X H  by restriction of G operation on X. 
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That was given to us and I will restrict that G operation to X H . That means we have a map

from G cross X H  to X H  
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that means any  σ  , x, that goes to  σ  of x. This makes sense. That is what we have

checked 
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in 1. But I want to say something more.

Now  this  operation  is,  will  give  you  an  action  homomorphism.  That  means  you  have

homomorphism. So this will give us a group homomorphism 
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from G to the permutation group on this set X H  bijections. 

And therefore we want to know what is the kernel, so this is the Θ  map 
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and we want to know what is the kernel of this group homomorphism. So this, now this

second, this says something of the kernel of this group homomorphism. 

So kernel of theta, because it is the kernel of a group homomorphism, it is a normal subgroup.

So this is what, what is a kernel by definition? All those elements σ  in G such that σ ,

when I send it here as a map from X H  to X H , that should be identity map. 



So we have restricted this to this σ , restricted to X H  is identity map on X H . That is

precisely the kernel of this group homomorphism. 
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This is a non, and I want to call it ~
H  
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so this is a normal, it is a normal subgroup of G with, H is contained clearly in ~
H . 
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This is also clear because to check that elements of H are contained in ~
H  means that every

element H in, τ∈H  should, when I restrict to X H , it should be identity on X H  but

they are all elements of H, so they keep all these guys invariant. That means on that subset it

is identity. So this is very clear.

Now what is more important I want to say is when will exactly this kernel be equal? So that

is  a  statement  third,  H equal  to  ~
H  if  and only if  

G
H

,  now  
G
H

 makes  sense

because H is normal. This operates, operates faithfully on X H , 
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alright.



So that is, that is very easy to check but I want to use this. When will this be equal? When it

operates,  both  ways  are  clear  that  is  essentially  the,  when  do  you  say  group  operating

faithfully on the set, that means that the kernel is trivial. 

So I want to use this information to our situation in the Galois field extension case. This I will

do it after the break.


