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Lecture 04 – Polynomial Rings

Welcome back to this second half of this lecture on the polynomials. Last half I have defined

what a polynomial ring over a ring is. And I will continue with some basic properties of the

polynomials  which we will  keep using in  this  course.  I  will  still  be little  briefer  and faster

because in principle what I am doing now is a prerequisite for this course.
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So remember we have a ring R and we have constructed a new ring R[X] called polynomial ring

in, over R, or polynomial ring in one variable over R. And actually we can repeat this process. So

we can,  now we  can  take  this  ring  R,  R[X],  polynomial  ring  and  then  we  can  consider  a

polynomial ring over this ring in the second variable Y. But this is same thing as a polynomial

ring R[X,Y] now in two variables over R.

And this way we can construct polynomial rings in many number of variables. So note that for

each polynomial f, this a i are called the coefficients of f, a0 ,a1 , ... , an, are called coefficients of f.

And when this a n is non-zero, this n is called the degree of f, this is denoted by deg f, degree of

f.  And this  coefficient  an is  called  a  leading  coefficient  of  f.  So important  thing  to  note  is

immediately the formulas for the degrees.
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So for example, what happens, when I add two polynomials, what happens to their degrees? So I

will only say check, I am going to prove this, but check that. 1, if I take f and g, two polynomials

and then  look at  the  degree  of  f+g,  that  is  less  equal  to  degree  f,  degree  g  and take  their

maximum. Remember less equal to, it is not equal, it is less equal to because I could take f equal

to -g.

And  then  this  will  become,  is  not  defined.  So  some  people  define  also  let  us  say  for  its

convention, it is defined but make a convention that degree of a zero polynomial is - ∞. And you

will see why this −∞ and why not - 1. Why this convention is made? Because of the following

second formula: the second formula is very very important. Degree of the product is less equal

tot degree f + degree g.

Moreover, equality holds if R is an integral domain. What is an integral domain? Integral domain

is a ring which is free from 0 divisors. And what is 0 divisor? That means, so that is, I will just

spell out, that is if a and b are two elements in R, both are non-zero, then their product ab is also

non-zero. Then it is called an integral domain. For example, field is always an integral domain.
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So for integral domain, degree of the product equal to sum of the degrees. So integral domain

field,  fields  are  integral  domain.  Field  implies  integral  domain  but  obviously  not  this  way.

Because  we  have  an  example  here,  integers,  ring  of  integers.  This  obviously  is  an  integral

domain. It is the two integers if I take non-zero, their product is also non-zero. But it is not a

field, ℤ, it is not a field.

So  there  are  many  examples  of  integral  domain  which  is  not  a  field.  In  fact,  one  simple

observation I will note here. If R is an integral domain, then the polynomial ring R[X] over R is

also an integral domain. This is very important fact. We will keep using it. And nothing special

about one variable, I could repeat this argument. So moreover,  R [X1 ,…, Xn ] is also an integral

domain for any n in natural numbers.

And actually not necessarily for rational numbers. But anyway I will not need it in this course.

Even if you take polynomial ring in many many variables, number of variables could be also

uncountable and so. That will also be an integral domain because any polynomial will involve

only finitely many variables. And therefore if you have two polynomials, they altogether will

involve  finitely  many  variables.  But  ultimately  therefore  argument  will  come  down  to  the

polynomial ring over R in finitely many variables. So that is one.
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So we are going to take a field. So K is a field and ancient day it was taken K to the ℚ. This was

when Babylonians or, Babylonians did not even take ℚ, they only took natural numbers. So let

us say in  reasonable time,  that  is  16th century that  people took  ℚ.  They did not  even know

complex numbers correctly.

So take ℚ and then we would take a polynomial. So we are considering the polynomial over a

field.  So  I  will  keep  writing  general  field  but  specialized  to  this  strength.  So  I  have  this

polynomial ring over K in one variable. So elements of these are precisely the polynomial with

coefficients in K. So f is a polynomial. So f will look like a0+a1 X+...+an X
n. And this a n is non-

zero. And this n is therefore the degree of f.

So the simplest one obviously the constant polynomial. So that is all this has, so the degree is 0.

Degree is 0, means precisely degree of f is 0 if and only if f is a constant polynomial. So this

only, there is nothing to, nothing much to study in this. So if degree is 1, then we have, f will

look like  a0+a1 X. So this is called a linear polynomial. Linear, this is, degree is 1. Degree f

equal to 2, that will, f will look like a0+a1 X+a2 X
2. This a 1 is non-zero obviously, here a2 is

non-zero.



So that is also called quadratic. Qua is 2. And degree 3 cubic, degree 4 quartic or biquadratic;

degree 5, quantic; degree 6, sextic and so on. That is how the Greek started calling them. All

these words also coming from Latin. So what was the problem?

The last time I saw that then we want to solve these polynomials. Solve this means what? Equate

them to 0, and you get equation, so it is a polynomial equation. One should really say it is a

polynomial equation. A polynomial, you cannot say, so this writing it was allowed in the formal

days because the language was not so established. But as I said last time that created also lot of

confusion among people and that led to many errors and so on.
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So if I have a polynomial of degree n, a0+a1 X+...+an X
n, a n is non-zero, so this n is the degree

f. And then what are we doing? So we want to solve, again this is not so very precise, solve the

equation. Now it is equation, f = 0. So what does that mean? That means in this expression, in

this polynomial, all this a0 ,a1 ,…,an, they are known quantities, they are given to you. And X is

unknown. X is a variable, so it is unknown.

So when you say solve, means find all values of X so that this equality holds. Find, so find

values of X such that f(X) equal to 0. Now I cannot write X because X is a variable. So I cannot,

so instead of this when one writes, I could have used x. We will write like this. Find values of,

find all values in fact, find all values of x such that when I write X=x, it is f(x)=0.



For example, suppose I have only linear polynomial, so that means my polynomial f is a0+a1 X .

Then obviously the only x, so that f of x is 0, that is nothing but the only one value. That is, you

see, last time you said, this means a0+a1 x=0. That means x equal to 
−a0

a1

. So this was linear

polynomial, so a 1 is non-zero. So therefore we are allowed to divide it by a1. And not only that,

that means you need actually a field. Because if I take a ring of integers for example, and a1 is 2,

then I cannot divide it by 2, then the solution, so this x is called a solution of f.

This x will be then out of  ℤ, so it is very very important when you say find all values where,

where are you looking for values. This information is also very very important. So in former

days, up to 16th century people have tried to solve of course, linear, quadratic,  cubic and bi-

quadratic  and  found  the  formulas  for  these  values  of  solutions.  So  these  values  are  called

solutions of f. So let me write that also.
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So the values x with f(x) equal to 0 are called solutions of f. And now where are taking? So

initially, formerly when, in the former days f were taken in the field  ℚ with coefficients in  ℚ.

Coefficients in ℚ were taken because we have realized that even taking coefficients in ℤ will not

lead to solutions in general. So therefore,  ℚ was the smallest possible field one could take that

time and then the values we are taking in complex numbers ℂ . Values in complex numbers, they

knew sort of complex numbers, what complex numbers are exactly, or sometimes real numbers.



But we need to specify when, where we were taking the values. And nowadays it is very very

important in many engineering applications and many other science applications. They depend

on the polynomial f, and coefficients are not in ℚ but over a finite field F, a finite field is double

line F, the finite field. Then we are looking for solutions where? Again, so we are looking for

solutions, this ℚ may not have, we will, I will, immediately after this I will give some examples.

Given polynomial, there may not be any solution in ℚ. So again the same problem. So we have

to  enlarge.  So  that  means  we  have  to  consider  a  bigger  field.  Bigger  field  means  you  are

extending the operations of plus and multiplication so that it become a field and same operation.

So it is a subfield. So let us see some examples first and then we will come back to general

theorem.
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So examples.  So  first  note  that  linear  polynomial,  there  is  nothing much,  there  is  only  one

solution and that solution is in the base field. Now that is how I will, through examples I will

also develop a language. So K field and we have a polynomial f in K[X]. Now solutions of,

solution set of f(x) = 0, where, so first of all I will say V K, this is by definition all those elements

x∈K  so that x is a solution of f. f(x) = 0.

Remember this is a subset of K. So f were a linear, degree f = 1, then I know this precisely. V_K

(f) is precisely only one element, namely 
−a0

a1
. This is only one solution, exactly one. So where



remember f we have written like this: a0+a1 X+...+an X
n. n is equal to degree of f. So that means

a n is non-zero. Now even for degree 2 let us see.

If you take, for example if you take a polynomial like this, X2−2, think of this as a polynomial

with rational coefficients, and what are the solutions? V Q of this, this already you learned in the

school. That means X is ±√2. So this means, what is this? Then we have learned in the school

that √2 is not rational. That means there is nobody in this. So this is empty set. This is empty set.

So again, that means this polynomial does not have rational solution.
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But  then  we,  where  do  the  solutions  are  there?  So  obviously,  they  are  all  real  solutions.

V ℝ (X2 –2 )=±√2. They are real solution, and therefore they are complex solution also. This is

also same as V ℂ ( X2−2 ), the complex solution. So therefore it is very very important where are

we looking for solutions. And mainly, most, many times we do not have solutions in the base

field. So we try to enlarge the field to the bigger field and so on. So this is what we will do.

Now in this case, solutions are this √2. So that means, and where do this root 2 came from? It

came from this 2. More generally, if you take equation like this, quadratic equation like this,

X2
+b X+c, this is f, this is degree 2, so that means the f is quadratic. And we have studied in the

school that V ℂ ( f )=
−b±√b2−4c

2
. This may be real or maybe complex.



But definitely they are complex solutions. So one learns, and then one can also write when will

V ℝ (f ) will be non-empty, that if and only if the quantity here under the square root, it should be

positive. So b2−4c should be positive, non-negative. This is called the discriminant of f. And as

you see there is nothing special about defining discriminant of a degree to polynomial. I will

soon define discriminant of an arbitrary polynomial.

So when the discriminant is non-negative, it has a real solution and in fact both are real solutions.

So in fact, in this case also there are two solutions in general. One may be repeated. Now you see

all kinds of questions are cropping up. For example, given a polynomial of degree n, how many

solutions are there even when you enlarge the field and how many distinct? So all these things in

next few minutes I will try to summarize.

So first of all, note that all our efforts in this course will be very very down to the earth and

mainly  they  will  involve  polynomials.  And  sometimes  we  make  the  abstract  definition  but

ultimately we will have to come back to the concrete examples.
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So if you have a polynomial f=a0+a1 X+...+anX
n, this is an arbitrary polynomial of degree n.

And as we have seen also as the degree grows, finding the solutions as well as their analysis,

how many are there and some may be repeated like in case of the earlier example, they may be

repeated when the discriminant is 0 and so on, so all this analysis is very very important for our

study. So as far as, so this is a polynomial over a field K.



So when we say enlarge, enlarging, so K is a field, enlarging K to a bigger field which I will

denote usually by L, what does that mean? This means we have this given field K, you look at

the bigger field L, so that this K is a subfield. See the subfield means that the same operations

which are here of plus and dot, same operations are inherited to K. So in particular 0, which is a

neutral element for 0, addition, is also the same 0 here. So that means we can write 0L=0K. Here

is 0. Similarly 1L=1K, this is usually denoted by 1.

So therefore we will not have confusion. And such a thing is called a field extension of K. So K

is a field and field extension of K. And then we are given a polynomial f, we are looking for its

solutions in this L. Or even, so the biggest possible so that f has a solution. Now to do this, first

of all I want to reduce the problem that we can always assume this polynomial is monic. So what

are, for doing this what are all we assume?

(Refer Slide Time: 28:01)

That f is monic. That means the leading coefficient lc(f) of f is 1. And how can you achieve that?

I know that a n is non-zero. n was the leading coefficient. a n, this is non-zero we know because

n is a degree. And I replace f by the new polynomial 
a0

an
+
a1

an
X+...=an

− 1 f (X ). So the coefficient

has become 1 now. I have divided by a power n. Simply means that I have multiplied by inverse

an to f.  And this is our new polynomial. So this is very easy because of the coefficient.



So that is where I use the fact that K is a field. So a n inverse exist because it is a non-zero

element.  And therefore,  we can always assume for our purpose. So if x is a solution,  x is a

solution of f, if and only if, wherever that x is, x is a solution of a n inverse f. So we can always

assume for this. But remember this we can only do it when where coefficients we are treating f

as a polynomial over a field. If we are even doing over the integers, then we cannot do this

because in integers the only elements which are invertible are ±1.
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So now little bit,  2-3 minutes about the problem. So now what are we looking for? We are

looking for solutions. And we are looking for formulas. Formulas for solutions of f. What does

that mean? So the typical example is see, linear one, we have this formula:  
a0

an
. It involve only

the coefficients. In case of quadratic, remember they were −b±√b2−4 c
2

.

This is a formula for the solutions of quadratic equations. This quadratic equation:  X2
+bX+c .

And this was linear, so the linear also we could have done like this: 
a0

an
 + X. So just simply we

send  it  to  the  other.  So  these  formulas  involve  what?  They  involve  operations  addition,

multiplication and division also. So these are called field operations. They are operations of the

field, given field. 



We can divide in non-zero element, we can divide, multiple, add, subtract. In addition to this, we

have one more operation here, namely extracting square roots. That is where we need to enlarge

ℚ.  So  these  are  called  formulas.  So  one  now looks  for  formulas  for  polynomial  equations,

solutions of the polynomial equations where degrees are higher, degree 3, degree 4, degree 5 and

so on.

And as I told you yesterday, there are explicit  formulas are for cubic equations, bi-quadratic

equations. But in general, there were no formula for degree 5 equation onward. And this theory

evolved out of this that how do you decide a given polynomial of degree 5 has a solution, has a

formula in terms of these operations or not. And 2000 years, this question was not satisfactorily

answered till Galois came up with this theory. That, no, you cannot solve all the equations. This

means you cannot write down formulas for solutions for all degree 5 and onwards equation.

But then how do you decide the given f as a solutions which can be written in these operations or

not.  These are called solvable by radicals. So in this course, we will develop a theory and we

will apply this theory to explicit equations. And for them, there will be formulas. For the others,

there will not be formulas. So this  created lot  of good mathematics and also lot  of practical

problems and so on. Thank you. We will continue next time.


