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Okay, so let us summarize what we have done in the last lecture and a couple of lectures

before that. What we did was K, any field, n, nonzero natural number and the function n not

equal to 0 in K so that is GCD of n and characteristic of K, these are co-prime. Then we are

studying the field extension K, ζn  over K, where this ζn  is a primitive nth root of unity,

which is a generator, a generator of this group  μn ,  K (n ) , remember our notation for

K (n )  is K [ζn] . This is a multiplicative subgroup of K (n )  it is cyclic of order n and

we want to, we are proved that this extension is Galoi's, Galoi's extension and we are wanted

to find the Galoi's group of this extension.

And what we proved is, the first what we proved in the last 2 lectures, the Galoi's group of

K [ζn]  over K from this group to the Automorphism group of this cyclic group μn ,K (n)¿ ,

this is cyclic group of order n, so there is a canonical homomorphism here. Namely  σ

goes to the  σ  restricted to that because this is a subgroup of this. So I can restrict and

because  it  is  a  restriction,  this  group  homomorphism  is  injective,  injective  group

homomorphism. 



And in the last lecture we approved actually that this group homomorphism is bijective, when

K equal to ℚ . K equal to ℚ , this is a group isomorphism. Therefore the Galoi's group

of this is the Automorphism group of the cyclic group and the Automorphism group of cyclic

group of order n is, we can identify this cyclic group, this Automorphism group with the

group ℤn
x . And how is the identification gone? That is if you have an Automorphism, it

will map generator to a power of generator and that power should be co-prime to the order of

the generator and therefore it is mapping to that, this is the identification.

So  for  ℚ ,  we  have  the  complete  answer,  namely  the  order  of  this  Galoi's  group  is

precisely the order of this Automorphism group, which is precisely the order of this is ℤn
x

group  which  is  precisely  Euler's  torsion  function  ϕ(n) ,  value  of  the  Euler's  torsion

function at n. Now we want to do this for finite field case. So characteristic p case, where K is

a prime field of characteristic p, this was a prime field of characteristic zero. 
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Now we are assuming that K is actually, actually I will do little bit more general, actually I

will assume that K is a finite field of order q, where q is, characteristic has to be prime,

characteristic K is p Positive, therefore this q, the number of elements has to be power of the

characteristic. So I will denote q equal to  pe . And we do the same, what do we do, we

have now n, which is now co-prime to p and we are interested in finding out what happens to

this map, this Fq n  over Fq , this Galoi's group and this Automorphism, Aut μn  , do

not write μn  here μFq
(n) .



So this  is  Fq ,  this  is  nothing  but  the  splitting  field  of,  field  of  the  polynomial,  and

Xn−1 . That means you are attaching all the roots of this polynomial to this field and we

are considering the field extension. Now what we know, we do not know what is the order,

we only  know that  this  is  a  subgroup,  this  map is  injective,  this  restriction  map,  this  is

injective. That is the only information we have, group homomorphism. And these are, this we

know, this is identified with  ℤn
x . So this order we know, this is  ϕ(n)  and in case of

characteristic zero, we actually proved this map is bijective.

So then the order of the Galoi's group in the characteristic zero case, it is same as ϕ(n) .

We actually found the minimal polynomial, now here also we know that this is the Galoi's

extension, therefore order of this group I know. Order of this group is precisely degree of the

minimal  polynomial  of  ζn  over  Fq ,  minimal  polynomial  of  this  because  this  is  a,

because this extension is generated over Fq  by the root, primitive root. That we know, we

have, we know that information because this is a splitting field and ζ  is a generator of this

group, μn , μFq ,n , this is cyclic.

So if I know one element, where all the elements, their powers of  σ  and therefore this

extension is cyclic, therefore we know this is Galoi's extension and the order of the Galoi's

group equal to the degree of the field extension which is in this case because it is simple, it is

degree of the minimal  parliament.  This is  all  we know, now we want to check, it  is not

bijective  in  general,  so  we  want  to  check  therefore  what  is  the  image  and  the  extra

information we have in a finite field case that this group is cyclic.
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We know, now we will use information, the fact that, I will write on the next page. This

group  Gal(Fq[ζn]∣Fq)  is cyclic with generator, I know also generator, I know also its

generator. What is a generator, it is the Frobenius f q , that is, this is a map from Fq [ζn]

to Fq [ζn] , it maps an element y to yq . So , remember that this Fq [ζ] , Fq in this

time,  these  are  also finite  fields.  And it  will  have  certain  number  of  elements,  common

elements, let us write that also, Fq
(n)  this is a finite field with n elements and what is n, n

should be the degree of the dimension of  Fq
(n)  Over  Fq ,  the dimension,  this  is the

degree, that is n.

And we know this Galoi's group, therefore has cyclic of order n. So this  has Fq
(n)  order,

order of Fq  is n, which is also the order of the Galoi's group. Right, and now I want to see,

I want to write down now the identification more precisely because we want to see what is

image. And because a map is injective, the image of a cyclic group will also be cyclic. The

image will be generated by the image of a generator, therefore I know, therefore we have to

understand the identification.
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So I will let it once more, so this is Gal(Fq
(n )
∣Fq) , this means the injective map as given to

the Automorphism group of μ(Fq
(n)

) . These are roots of unity in  Fq
(n)  and this map is

σ  going to, σ  restricted to that. Because this is μ(Fq
(n)

) , these are the roots of unity

inside Fq
(n) , they are all of them there. This is a group of order, cyclic group of order n and

ζn  is a generator. This is what all we know and then we know Fq
(n) , this is nothing but

Fq [ζn] ,  this  is all  we know. And then we have identified this, this  identification with

ℤn
x .

And what is the identification, if we have an Automorphism τ  of the cyclic group, so let

me just write down the elements of this Automorphism group down here or I will write it

here.  τ ,  if  it  is  an  Automorphism  of  this  group  μn(Fq
(n)

)  to  μn(Fq
(n)

) .  So  the

Automorphism of a cyclic group will map a generator ζn  to a generator. But I know all the

generators of the cyclic group, I know one of them, I know the order of the group, then I

know all the generators. All the generators will be of the form ζn
r , where r is co-prime to

n.

GCD of r and n is equal to 1. And then we are identifying this  τ , this  τ  is uniquely

determined by the r. So I could have simply written this  τ  as  τr . So each co-prime

integer r to n will give you τr  and each τ  will give you r. So the identification of this,

this is r, this is r, that is the identification. And this r, we are reading mod n, strictly speaking



it is r, I should write rn. When you are reading r modulo n. And that is clearly an element

Because r and n are co-prime, so they are precisely the units in this ring.

So therefore, our problem is where we will Frobenius, which is a generator of this group,

where will it go under this identification, that is what we want to understand. So where we

will Frobenius go? So, I will, I still have the space here, so I will use now the green colour.

So we are interested in where we will Frobenius go. What is the Frobenius? Frobenius is, it is

denoted by Fq and Fq, what is the Fq map, that maps any element y of the field to y power q.

So and where will  it  go here,  that  is  Frobenius  restricted  to this  group,  that  means it  is

restricted to the unity, roots of unity.

But where will that map ζn , ζn  will get mapped to ζn
q . And q, what was q? q was p,

the power of p, the q was characteristic, q was the power of the characteristic. So q was pe

. And that, that one, I want, that q goes to, you are reading that q, where will this Frobenius

go then, this q reading mod n and then that is reading mod n is this notation, so q goes to the.

So therefore the image of this Galoi's group in this generated by that q.

So I will write here, the image of the Galoi's group, Gal(Fqn∣Fq)  is in ℤn
x  is generated

by  [q]n . That integer q which is the power of p will generate the image of the Galoi's

group. So in particular it is cyclic. So therefore we have to find, you have to find the order of

the Galoi's group, I have to find the order of the generator.
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So,  therefore  to  determine  the  order,  the  cardinality  of  the  Galoi's  group,  we  need  to

determine the order of  Fq . And hence to determine the order of its image, which is a

residue class of q in the group ℤn
x . And this order I am going to denote by order of [q]n

, this is precisely the order of the residue class of q mod n in the group ℤn
x , this is what we

need to compute. In other words, what we have proved is Galoi's group, the order of the

Galoi's group, this order equal to order of q n. This is by definition the order of the residue

class q in ℤn
x . So this is what we proved.
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So let me write this as theorem, I will summarise in the theorem and, so the theorem what we

proved is the following. So, we are taking p prime number and q is the power of p, exponent

and we are considering the polynomial an n, integer n nonzero natural number, n is co-prime

to p and we are taking the Fq
(n) , this is the splitting field of the polynomial Xn−1  over

Fq . And we are denoting qn, this is a residue class of q in ℤn . And note that this q and

n are co-prime because q is a power of p and p does not divide n, so this an element here.

Okay, with this notation, then we know that the degree of the field extension, this is equal to

the order of the Galoi's group and we know it is a Galoi's extension, therefore this equality, in

fact we also know that this group is cyclic. So we have used that information to check that

this order is nothing but the order of q n, this is precisely by definition order of q n in this

group. And what is your do then? But q is a power of p and I know what is the power of,

what is, this is precisely the order of order n pe . And I know how do you compute order of

element, order of an, power of an element in terms of the elements.

So this order is same thing as order of p divided by GCD of n and e. And what is n is, where

n is, n is equal to this order, whatever it is. So we have become so these I wrote, the last 2

equalities I wrote precisely for the calculation purpose. So, the order of p power e, you only

have to calculate the order of that prime number p in ℤn  and we have to go mod, divide it

by the GCD of n and e, so where n is the order of that group, where we are working. So order

of n is also the order of, this is the order of n, this group. So this n is the degree of this field

extension.
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So that is a complete answer to this. Now, therefore what will be the, it is therefore, question

remains, what is the minimal polynomial? Whatever it is, so I know therefore phil n, so I will

just write a statement over Fq, the cyclotomic polynomial. What is a cyclotomic polynomial?

You take  Φn , that is you take all elements of order n,  X−ζ  and order of  ζ  is n.

This is, this is a cyclotomic polynomial. This order, this polynomial now split into how many

factors? I know, this group has order, this group has order so much and this is a sub group of

this group ℤn
x .

So therefore the cyclotomic polynomial splits into how many irreducible factors? The total

was , Φn the degree of this polynomial is ϕ(n)  and among them I have to calculate, I

have to take order n q divide by order n q because that is the order of this subgroup, that is the

order  of  that  subgroup. So cyclotomic  polynomial  is  split  into so many prime factors  of

degree order q n. Because each irreducible factor will give you finite field extension of the

same degree, therefore this polynomial you spread into so many linear factors. So many, not

linear, so many prime factors and it will be of this order.

So, so  Φn will be equal to π1 ...πr , there are no multiplicity because they are all, there

is  no repeated  zeros  here  because of  our  assumption  locus  and is  not  equal  to,  n  is  not

divisible by p. And so each one of them Φi  have degree this. So with a degree of πi

equal to order q n. So that is a complete information about the Galoi's group of a finite field.

What we have proved is the following.
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In particular, Gal(Fq
(n )
∣Fq) , this is a cyclic group of order which divides order of p mod n.

See, because of answer should be in terms of the given data and given data is we have an

integer and we have p. Because once we have p, we have q. So these answers depend only on

p and n, okay. So the divisor of this, okay, so the particular case is what? So, in particular,

further in particular, let us look at the case, when order of p is 1, what does that mean? This

means what? If the order of p is 1, that means what? 

That is p mod n is order 1, that means p has to be congruent to 1 mod n. Order 1 in which

group, we are looking at this group ℤn
x  and order 1 element here is precisely the identity

element and identity element is precisely 1. So that means 1 and p coincides in this group,

that means p is common to 1 mod n. So in this case, therefore the order of the Galoi's group

which is the divisor of this order but this order itself is 1. So then the Galoi's group has order

1, that means these fields are equal.

So then Gal(F p
(n )
∣F p) , this has to be trivial, in particular therefore Fp

(n)  equal to Fp .

And when can this occur, when will this occur? That means, that will mean that the phi, the

cyclotomic polynomial should have zero in p only.
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That is if and only if, so, which is if and only if  Φn has zero in the Fp . So that is if and

only if ϕ(n)  at a is congruent to 0 modulo p for some a in integer, it is clear. So here you

see this equality means, this was a splitting field of  Xn−1  and this is generated by the

roots of, the order 1, order n elements of that multiplicative group, consisting of roots of



unity, that is all containing Fp . In particular this Φ(n)  has a zero. But Φ(n)  has a

zero means, in Fp  that means at some a it is zero but mod p everything, so that means this.

So, with this I will deduce further more corollaries from this in the next lecture. And then I

will switch onto more examples of field extension which are Galoi's and debating how do you

realise any finite abelian group as a Galoi's group over q. Okay, thank you.


