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In the last lecture, we saw roots of unity over an arbitrary feel. And we are trying to study the

Galois  group  of  the  field  extension  which  we  got  by  adjoining  a  primitive  

Nth root of unity to a given ground field. So let me recall the notation.
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So  first  of  all  K  field  and  we  are  studying  this  polynomial,  X
n
−1  and  the  zeros  of  this

polynomial and we decided that it is enough that we can assume that this n and the characteristic

of K, these are co-prime. So in characteristic of zero, this is always true. So if K were Q, there is

no condition. And this condition is equivalent to saying that n dot 1 is not zero in K. This is n in

K  not  zero.  This  is  automatic  in  characteristic  zero  field.  No  integer  can  be  zero  in  the

characteristic zero field.

And then we have, what we did was we first enlarged this field L so that it contains all the roots

of n-th roots of unity. So μn(L)  is contained here and this is actually a finite subgroup of, this

is actually contained in Lx , this is a finite subgroup of Lx  and therefore cyclic and hence

cyclic  of  order  n  and it  has  a  generator.  Generator,  any generator  of  this  group is  called  a



primitive root of unity. So ζ  is a primitive n-th root of unity. That is ζ
n  is 1 and not only

that, the order of ζ  equal to n which is also order of this group μn(L) .

And once you have chosen such a root, then we know that if I take a subfield of L generated by

this  ζ  is  K, this  is  contained here,  this  is  contained here.  Now we are interested  in this

relationship because also note that this whole  μn(L)  group, this is actually a subgroup of

K [ζ ]
x  . That is because one  ζ  is there. All elements of this which are powers of, this

group is nothing but 1, ζ , ζ
2 ,…, ζ

n−1 , this is that group. So this is visibly contained in

this.
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And we, what we noted was this field extension , this over K is Galois because we know how to

test a simple extension is Galois, that is since the minimal polynomial of  ζ  over K divides

X n−1  in KX. And this polynomial has different routes, distinct roots and all are simple and

therefore  μζ , K ,  so  μζ , K  splits  into linear factors simple linear  factors in  μζ[X ]  and

therefore this extension is Galois. And we also know what is the degree of this field extension.

So  the  degree  of  the  field  extension  K [ζ ]  over  K,  this  I  know  because  it  is  a  simple

extension, it is degree μζ , K .



But because it is Galois, this degree is also equal to the order of the Galois group of K [ζ ]

over K but we do not know exactly what the order is, we do not know exactly what my is, my

ζ  is. Therefore we do not know what is the degree is. But still we want to conclude about the

structure of this group. In particular I want to note that this group is Abelian and for ℚ , when

K equal to ℚ , I want to conclude, I want to give a structure for this group, what is the group

exactly?  This  is  what  we  want  to  do  it  now.  Okay.  So  one  problem is  to  find  a  minimal

polynomial exactly and therefore we can find the degree and then that we will give a order of the

Galois group but that will still not prove it is Abelian for example.
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But what information now I want to extract from this group μn  is this group. μn  is the the

group generated by ζ . This is ζ , ζ
2 ,…, ζ

n−1 . This is a cyclic group. So this μn , I

separate that K [ζ ]  over K from or L from the notation. This is that group. This is cyclic of

order n. And we know what are for example what are the automorphisms as a group? What is the

Aut  μn  of this group? Automorphisms as a group, I do not have to write here. This is the

automorphism group of the cyclic  group  μn .  And we know automorphism group, so that

means they are automorphisms of the group.

So that means the elements here are precisely the group homomorphisms from this to this. So let

me  call  it  τ .  They  are  group  homomorphisms  and  bijective.  Inverse  is  also  group



homomorphisms. So therefore, it is clear that it should map a generator to generator. So  τ

should map, τ  maps generator, any generator to a generator. So one generator, we know it is

ζ . This should map it to another generator but we know all the generators of this group. What

are the generators of this group? Let me write it on the next page. So the, I will write here the

answer first. So it is going to ζ
r  where r is small or equal to n−1  zero this and also GCD

of r and n should be 1. Only those are the generators.
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So now this  observation,  I  have  deduced  it  from the  fact  that  generators  of  this  group are

precisely, we can describe them in terms of a given generator and the given generators I use is

the ζ . They are ζ
r  where zero less equal to r less equal to n-1 and actually 1. And GCD of

r and n is 1. So it is clear that  ζ
r  is also generator because the GCD is 1. That means the

combination  ar+bn=1  and this will mean that when I raise it to  ζ  power 1, so that is

ζ  will be equal to ζ
ar+ bn . But this is equal to (ζ

r
)
a  and that will be (ζ

n
)
b .

But this is 1 and therefore this is nothing but (ζ
r
)
a . So once ζ  is generate that so this is

this power of this is also  ζ , that means this also generates and precisely those generates.

Because  if  the  GCD is  more  than  1  then  it  will  generate  a  subgroup of  smaller  order  and

therefore it cannot be the whole group. Therefore it cannot be the generators. So we know the

generators.  And therefore,  this  group aut this  group  μn  you can identify with the  ℤn
x .



Remember what are the ℤn
x  elements. They are precisely the elements, this is a unit group of

the ring ℤn .

That means, they are units in that ring and we know they are precisely the integers which are co-

prime to n. And what is the identification? This identification is, any automorphism τ , this

τ  is uniquely determined by the fact that where τ  goes, where the ζ  goes. So look at

τ  of ζ  and that is a power of ζ  and that power, I am Abelian to that power where this r

is defined by this equation, τ  of ζ  equal to ζ
r . This is the identification. Given any r

which is co-prime, you look at this definition, that will give you automorphism of this and this.

So this group is the unit group of ℤn  and we know what is the order of this group.
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The order  of  this  group is  so  we know the  order  of  cardinality  of  Aut  μn  which  is  the

cardinality of the unit group of ℤn
x  which we know it is ϕ(n)  this where ϕ  is Euler’s

quotient function. Now it is clearly Abelian group. It is Abelian but may not be cyclic but need

not be cyclic. For example, when you take n equal to 15, that is ℤ15
x , this is ℤ3

x
×ℤ5

x  and

here, you see there are elements here there are the elements of order 2 are more than 1. See in a

cyclic group, the elements of order n the elements of order d are precisely few of d.



So I would simply say check that this group is not cyclic. Because this is even order, this is also

even order and this is what, what is this group? Actually you can write down, this is ℤ2×ℤ4 .

As a group, this is cyclic. So let me not write this. This is cyclic of order 2, this is also cyclic of

order 4. These are fields. Therefore the groups are cyclic. This is order 2, this is order 4 and they

are, 2 and 4 are not co-prime. So there is an element of order 2 here, that element, identity and

element of order 2 here and identity here, there will be at least 2 elements of order 2.

So therefore this group cannot be cyclic. But Gauss has answered this is a theorem of Gauss

exactly for which n determine all n such that this group is cyclic and there is a nice answer to

this. So you take this as an exercise. So this group is not, so this has something to do with the

prime decomposition of n. So I will just say, look at the prime decomposition of n. See, I want to

conclude the Galois group, so I want to state the theorem.
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So before I state, I want to create a notation for this  K [ζ ] .  K [ζ ] , we know this is the

splitting field, I start using this term now, splitting field of  X
n
−1  over the given field K and

remember that n is not zero in K. That is important assumption we have made. So and what is the

splitting field? You look at this polynomial and enlarge K so that all the roots lie in that field and

take the subfield of that field generated by the roots. So in symbols, first of all you take L so that



all  roots  of  this  polynomial,   V (X n−1 )  all  the  roots,  they  lie  here.  They  are  completely

contained here.

So I do not have to see here what? So they are all roots and and among…that so take these roots

and take the field over K adjoined to all this case and exactly those. This is contained here, this is

contained here and this is clearly a subfield because whether they are round bracket or square

bracket, it is same because we are in an algebraic case. We are an algebraic feel extension case.

Therefore subfield, this is same. Because this extension is algebraic and this is an intermediary

field which is generated as a K algebra over K by the roots of this polynomial, that is precisely

the splitting field.

So this splitting and this ζ  is 1 generator but I want to get independent of that ζ . So I will

denote the splitting we will denote this  K [ζ ]  because this depends only on this N and K.

Right? So this I want to denote by K (n ) . Actually strictly speaking, I should say I denote this

by this  and we have noted that this equals to this. So this is and we have checked that this

extension over K, this is Galois. We know it is a primitive root, primitive element is this but we

do not know what is the Galois group.

We do not know what is its degree exactly but obviously now one might have guessed that this

degree of this extension has something to do with ϕ(n)  because this came out of that group

which has order, the automorphism group of that  μn  has order  ϕ(n) . Okay, so precisely

we will prove the following theorem.
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So theorem. So let K be a field, n a natural number, nonzero with condition that GCD of n and

characteristic K is 1. That is n is not equal to 0 in K. This is what the assumption we had. Then

the map. I am giving the map between the 2 groups. One group is the group we are interested,

that is Galois group of K (n )  over K. This is the group we are interested in. We are interested

in this Galois extension, we do not know degree, we want to find the degree.

On the other hand, from this n, we got hold of the group μn  which is a cyclic, which is a finite

subgroup of this field cross. Therefore it is fine, therefore it is cyclic and therefore I will talk

about, we can talk about automorphism group of that field. μn  in this field K (n ) . There are

the roots of unity in this field and they are all of them are there. So this group has order n and

this is cyclic of order m. But I am not saying the automorphism group is cyclic. But this group I

know, this group is isomorphic to ℤn  and then units in that, ℤn
x . This I know.

And I want to give a map here. Then the map, what is the map? That means I have to map any

automorphism  τ ,  σ ,  σ  is an automorphism of  Kn  to K power and, this  is a K

algebra automorphism. This I want to map it to an automorphism here. Well, but where is this

group? This group μn(K
(n)

)  , this is a subgroup here of the multiplicative group. μn(K
(n)

) ,

this is , this one is a sub of this. Actually it is a subgroup of K (n )x  and this σ  is a K algebra

homomorphism. So σ  restricts, σ  restricts the multiplication.



So when I, this is contained here, so when I restrict σ  to this, σ  restricted to this, so I will

not write what?  σ  restriction, so these are the elements and I can restrict  σ  to that and

where does it go? So  σ  first of all will be uniquely determined by its value on  ζ . And

once σ(ζ)   is that so this the because it is a multiplication also preserved, so it will give you

that the group homomorphism here. Actually group automorphism. So this section will give you

automorphism of this group. So this is an automorphism of this group, μn(K
(n)

) .

Remember,  I  just  said  that  it  is  a  group  homomorphism  and  because  this,  this  map  is

automorphism,  this  σ  is  an  automorphism  so  it  is  in  particular  injective  and  this  is  a

restriction of injective map, so it is definitely injectable. And this is now a finite set, this is the

same set. So in interactive map, from a finite set to finite set is a bijective map. So this is also

bijective and it is a group homomorphism because this σ  is a multiplication preserving map.

So note that this σ  is indeed an automorphism of this. So we have given a map, then take any

σ  and  map  that  σ  to  this  restriction.  So  σ  is  mapped  to  the  restriction  to  this

μn(K
(n)

) . So we have a map and what is the statement?
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The statement says that the map this map is injective group homomorphism. In particular, this

Galois group K (n )  over K is abelian because the automorphism group is abelian. Because this

group is Abelian because it is ℤn
x , it is a multiplicative group of a ring ℤn , therefore it is



Abelian. Therefore this group is a subgroup of this. You can identify this as a subgroup of this

and therefore it is Abelian. And it can be identified canonically with a subgroup of ℤn
x . Again

I say canonically because I did not choose any ζ . Furthermore, the order of this group Gal

Gal(K (n)
∣K)  the  which  is  equal  to  the  degree  the  field  extension  because  it  is  Galois

extension, this divides the order of ℤn
x .

This is by Lagrange’s theorem. This is a subgroup of this, therefore order divide this. But this

order I know, this order is ϕ(n) . Therefore the order of the Galois group divides ϕ(n) , that

is the information we get it. And okay then I will continue after the break.


