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So we have seen the fundamental theorem of Galois theory and its proof. Now I want to illustrate

this fundamental theorem by some examples. Actually some part of these examples also we have

discussed before.
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So the first example is about finite fields. So let us recall that supposed K is a finite field, then

we  now  that  the  characteristic  of  the  finite  field  cannot  be  positive  cannot  be  zero.  So

characteristic of K has to be p positive. p prime number. Because K is a field, therefore the

characteristic has to be prime number and because it is finite, it has to be positive. That simply

means that K contains the field that 
ℤ p , this is the prime field of K. This is the prime field of

characteristic p. And then the degree of the field extension has to be finite K over 
ℤ p ’s capital

and. Then the cardinality of K has to be p
n

. p power this which is p
n

.

That is clear because this dimension is n, therefore K as a vector space of 
ℤ p  has dimension N,

therefore K is isomorphic to Z Power N as a vector space, in particular the cardinalities are same.



So in particular this. Conversely, we have proved that given any power of a prime number, these

are  series  with  exactly  p
n

 elements.  All  right.  And  that  so  the  power  finite  fields  have

cardinality power of prime powers of prime numbers and conversely, given any prime power

q=pn ,  there  exists  a  field  Fq ,  they  are  denoted  by,  this  is  the  field,  finite  field  with  q

elements.

And you know, this finite field is nothing but the zero set of the polynomial X
q
−X . And this

polynomial have all the zero inside this field Fq . And also we have checked that any 2 fields of

the same cardinality are isomorphic as big. In fact, they are isomorphic over the prime field. So

this is a big discussion about the finite fields.
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And then now if I take a field extension, 
Fq n  over Fq . Now q  is a power of prime, that q  is

a power of prime. So any field, any finite field extension of Fq  has to be this because we know

that any two fields with cardinality q
n

, they are isomorphic. So anyway this is a finite this is a

field extension of degree n. And first of all, note that I want to show that this extension is Galois

extension first. So that is because look at this map from 
Fq n  to 

Fq n , this automorphism is very

important, it is denoted by f q .



What is the map? This is x going to  x
q

. This is the map. So obviously this map  f q  is  Fq

linear. It fixes elements of Fq  because when you raise it to the power q , it becomes X. So it is

Fq . So this is and it is clearly ring homomorpohism. In other words, I am saying that this Fq  is

indeed an element of the Galois group of
Fq n over Fq . And note that if I take the powers of F,

the powers of this  f q ,  
f qi  and i is varying from 0 to  n− 1 . These are the composites of the

automorphisms of 
Fq n  over Fq .

So they are contained in obviously in this Galois group and they are clearly different. Different

because what do the x? f q  where do x go under this? This go to xq
i

.
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So therefore, if I and they are different,  not all elements,  so therefore this shows that if i  is

different from j and in between 0 and n−1 , then f q
i
≠f q

j . Just if they are equal, then for all

x they will  be equal.  But then the polynomials  of degree i and degree j,  you work out that

argument  that  shows  the  same.  So  that  means  this,  the  Gal(Fqn∣Fq) ,  this  has  at  least,

cardinality of this is at least n. But on the other hand, this n is nothing but the degree of Fq n

over Fq , the degree is precisely n.



But this  is  bounded by this,  this  bounds the cardinality  of  the Galois  group.  So that  means

equality happens. So that shows that this extension Fq n  over Fq , this is a Galois extension

and this  Fq  is the canonical generator of this Galois group. I am not saying it is the only

generator. It is a canonical of this. And what I just want to explain this word, why do I say

canonical? So in particular, this group is cyclic. So therefore finite field extension, the Galois

group is cycling. It is a Galois group extension with Galois group is cyclic. So before I go on, I

want to explain this word about canonical.
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So look at the cyclic group. So ℤn  where n is some nonzero natural number. We know this is

a cyclic group. Cyclic group under addition of order n. This group has many generators and

when we say that this cyclic group, these elements generate the cyclic group, that means we have

a choice and the choice involves how many elements? We know, this group has cm generators.

And we make the choice. But in that case of the Galois extension of the finite field, the choice is

clear, the choice is canonical, that means the power map does not depend on the choice. So that

is why it is called a canonical generator.

So this Galois group is cyclic of order mn. Now fundamental theorem says the subgroups of this

group and intermediary field extension, so what are the intermediary field extensions?  Fq n

over Fq . Their field sign here is Fq n  and this. So we know, this M is also finite field and



therefore, M will have cardinality power of this q because cardinality of n will precisely be equal

to Fq Power what? The dimension, the degree of M over Fq .

And this one is this one M over Fq  divides Fq n  over Fq . This is n I know. So these are

precisely  the divisors of  n.  So if  we have intermediary  field then there is  a  divisor of,  this

corresponds to a divisor of n. Conversely, given any divisor of n, there is a unique field, unique

finite  field of  the  cardinality  qd .  So therefore the intermediary  fields,  they correspond to

precisely  the  divisors  of  n.  When  I  say  divisor,  that  means  divisors  of  n  (in  ℕ ).  They

precisely  one-to-one  correspondence,  given  any divisor,  there  is  a  finite  field  of  that  pd

element.  And  because  they  are  unique  it  is  a  intermediary  field.  Conversely,  given  any

intermediary field, there is a the degree of that field extension over the base field Fq , we will

have divisor of M. So these are one-to-one correspondence with the divisors of F. Now what are

the subgroups?
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The subgroups of Galois group of Fq n  over Fq , so this is now subgroup. This is a cyclic

group of order n and we know, given a cyclic group of order n order all the subgroups, given a

divisor d, so they also corresponds to divisors of n. So when I say divisors of n, they are always

in natural numbers. So how? Given any divisor d, I want a subgroup of order d. So what do we



do? We take a generator x, generator G, G generator of the group. Let us call this group as G.

Generator of G. Then you raise this g
n
d  and take the subgroup generated by that.

So  this  subgroup  will  have  order  d.  So  given  a  divisor,  we  have  a  subgroup  of  order  d.

Conversely, given a subgroup H of G, Lagrange theorem will tell you the order of H will divide

the  order  of  G.  So  that  gives  this  by  bijective  correspondence.  So  therefore  the  Galois

correspondence which gives the bijective map from the intermediary fields and the subgroups of

the Galois group, this is so natural. They are only the divisors of the extension. So there is not

much to study in this case but what is more important I will show you later in the later lectures.

How to  choose  primitive  elements?  How to  choose  primitive  elements  for  the  intermediary

fields? That was precisely done by the Gauss and that was known as Gauss periods. So how to

compute them, that we will learn later.
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Now the 2nd example, very important again is about the roots of unity. Roots of unity. Now first

of all, note that this also we have remarked earlier that these are also, this will lead to what is

called cyclotormic fields. Okay what are these? So roots of unity means we are concerned with

the polynomial  Xn−1 . So if we have a field, so K is a field. And this polynomial we are

considering as a polynomial in  K [X ] .  And the zeroes of this polynomial,  so I have used



Chronica’s theorem to say that there exists a field L, finite field extension of K such that all the

roots of this polynomial lie in L.

So that means all the elements X such that Xn=1 , these are contained in L. Note that because

we are concerned with the roots of this polynomial, they are called the roots of unity because the

power that is 1. And also I have noted earlier that to study these roots, we might have assumed

that  n  and  the  characteristic  of  the  field  are  co-prime.  Because  remember,  roots  of  this

polynomial are precisely what are called roots of unity and then that I have denoted by μn(L) ,

this is all the roots x∈L  such that xn=1 .

And this is clearly a subgroup of Lx . This is a finite subgroup of Lx . In fact, it is a kernel

of  Lx  to  Lx ,  this  is  a  group homomorphism,  x  go  to  xn .  This  is  clearly  a  group

homomorphism and it is a kernel of this. And therefore, it is a cyclic group. So the order of this

group is not more than n. When it is exactly n, it is cyclic and the generators of this group are

called primitive elements primitive roots of unity.
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And now what we want to study? So we are assuming the characteristic of the base field. So this

is upper base field L K the base field and we are assuming n and the characteristic of the base

field is 1. That simply means, the GCD means n times  1K  is nonzero. So n is not a zero

element of the field. That is what it means. And this field, we have enlarged to L. So that all, all



my, all the roots, so V (X n−1) , they are all, all are there. So this is μn(L)  is precisely this.

And we know that this is a finite extension.

So therefore, there is a root, I want to say that there is a ζ  primitive n-th root of unity in L.

okay. So that means K and L is here and in between, there is a subfield called generated by K

and ζ , this is in between. So this ζ  is a preventive root means, it is a generator of, this is a

generator of the cyclic group  μn(L)  which is a subgroup of L cross. Now I want to show,

once we know it is a generator, then all other elements are the powers of this  ζ . So that

means, this Xn−1 , this polynomial is a product of all the elements here. If μ  this group if

it is, this group has N elements, so these are ζ1 , ζ2 ,…,ζn , these are all elements.

And this one is 1, one of them is 1 and the others are root. So they and they are all and I want to

say they are distinct. So this is 1 to n, this. This is this product because this polynomial splits and

why are they distinct?
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So to show that they are distinct, the derivative of this polynomial, the 
d
dX

 of this polynomial

has no common zero with Xn−1 . But what is 
d
dX

 of all…In other words this polynomial

and this polynomial, they are co-prime. So this is what? This is nXn−1  and n is nonzero in K.



And the roots only are 0. And they are not roots of this.  So therefore none of the roots are

common. So they are distinct. And not only that, directly from here also, we will see that the

order of the element ζ  equal to n. That is because you see it is you look at this Xn−1 , this

will this is X−ζ  is one of the roots, so it will come out as a factor and what is the remaining

factor?

Xn−1
+ζ Xn−2

+...+ζ
n−1 . This is clearly, this product is clearly equal to this because X times

this is Xn ,  this one −ζ  times power n−1 , this is going to get canceled with this term.

This term will get cancelled with this term and so on. Successive terms will get canceled and

only the last one will remain, ζ  times this ζ
n−1  which is ζ

n  which is 1 because it is a

root of Xn−1 . So we have this. So when I look at when I put X equal to ζ  in this, what do

I get? I have to show that this is nonzero because this is a simple route. That means when I have

to put X equal to ζ  in this expression, it should become nonzero.

But what is that? That is  ζ
n−1

+ζ ζ
n−2 , that is  ζ

n−1  etc etc  ζ
n−1 , this is nothing but n

times ζ
n−1 . n is nonzero in the field K. Therefore this is, if this, after putting X equal to ζ ,

if it were zero, then ζ
n−1  will be nonzero. So this implies ζ

n−1 . So that implies ζ  is a

simple root. So order of ζ  equal to n. This is a simple root. All right.
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Actually, therefore this polynomial Xn−1 , this is product X−ζ
i , i is from 1 to n. So this is

a degree n polynomial. I know all these are the roots because each root of unity is a power of

ζ . So therefore, this polynomial actually splits into simple linear factors in the field in the

polynomial  range  over  this  field.  All  of  them are  here  and  all  of  them are  different  from

therefore, over this field this polynomial splits into linear factors. So therefore, this K [ζ ]  is

the smallest subfield of that L of which is which is an extension of K which in which Xn−1

splits into linear factors.

So this is also called, that means, let me use the word, that means K [ζ ]  is the splitting field

of Xn−1  over K. And now what do want to prove?
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So therefore  K [ζ ]  over K is a Galois extension. Okay. So to check somebody the Galois

extension, what do we want to do? This is already a simple extension. And if we want to check it

is a Galois extension, I only have to check that the minimal polynomial of ζ  splits into linear

factors over K. So what is the minimal polynomial of ζ ? In any case, minimal polynomial of

ζ  is  the smallest  degree polynomial  where  ζ  is  the  root  but  one polynomial  I  know

definitely this polynomial, this is also polynomial in K [X ]  and this polynomial also has ζ

as a root.



So therefore this minimal polynomial has to divide this in K [X ] . So it divides in K [X ] .

But  we  have  noted  that  these  polynomial  factors  into  simple  linear  factors  over  this  field.

Therefore, all the roots of this pronominal lie here and they are simple and this one therefore,

therefore so is true for minimal polynomial also. so minimal for nominal of  ζ  over K also

splits into distinct linear factors in  K [ζ ] . Therefore this extension is Galois because one of

the immediately  when we defined our Galois  extension,  we checked that  how can a  simple

extension be Galois.

That is when you only have to look at the minimal for nominal and the minimal polynomial

should split into distinct linear factors over that field. So which is 2 in this case. Therefore it is a

Galois  extension.  So  the  next  question  therefore  is  what  is  the  Galois  group?  So  what  is

Gal(K [ζ]∣K ) ? And we don’t know yet, what is exactly the degree? We only know, this is the

Galois extension. We don’t know this is, this should be…we know that this order of this Galois

group equal to the degree of K [ζ ]  over K, this we know because the field extension is Galois

and  this  degree  of  this  simple  linear  extension  is  nothing  but  the  degree  of  the  minimal

polynomial of ζ  over K.

But we don’t know what is the minimal polynomial. So we want to know what is the minimal

polynomial  and that  we will  do it  next  time and that  will  also illustrate  what  is  the  Galois

correspondence in this case. Now what is the Galois group precisely? What is this group? Like in

the case of finite field extension, we proved that Galois group is actually cyclic. In this case,

what is exactly the Galois group? It may not be cyclic in this case but we will prove it is an

Abelian group and we will also calculate its order. Okay. . we will continue in the next lecture

about the analysis of the Galois group, its order and the structure. Thank you.


