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Remember  that  in  these  lectures  here  are  studying  finite  field  extension  along  with  its

automorphism groups, so recall briefly what we have done so far if we have a field extension

L over K finite field extension we have attached a group to this namely the automorphism

groups of L as K algebra and this group is also called the Galois group of L over K. I want to

stress again to define these groups we do not have to assume the field extension is a Galois

extension after this we have noted that the order of this group is bounded by the degree of the

field extension which is dimensional of L as K vector space and then we define L over K

Galois extension if the equality holds that is order of the Galois group is equal to the degree

of the field extension.

Remember this is only a numerical condition that is how we define Galois extension and 2

things we have proved that if L over K is Galois then L is simple over K, so L is K [ x]  for

some x which is K round bracket x this is because this is finite for some x, such an x is also

called primitive element for L over K and there may be more than one primitive element.

This is also called Galois resolvent for L over K, some people actually call not the element as

a Galois resolvent but the minimal polynomial of x as a Galois resolvent. 



So this is very important and 2nd thing we proved was if L over K is Galois then the fixed

field of L under the action of the Galois group is a base field, these 2 things we have proved.

Actually  we want  to prove the converse also but  today I  will  first  state  the fundamental

theorem  of  Galois  Theory  which  will  give  a  interplay  between  the  Galois  group,  its

subgroups and the intermediary field extension. 
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So now I will only state fundamental theorem of Galois Theory. This is so fundamental that it

connected 2 subjects one is theory of equations studying the roots or zeros of the polynomials

then from this we get field extensions and from the field extensions get the Galois groups and

we want to study this interplay, so let us fix to field extension L over K field extension, finite

field extension and the set of all intermediary field extensions so that I am going to denote

F(L∣K )  these are subfields of L which contains K, so these are all M, K is contained in

M, M is contained in L and M is a subfield. 

These are also called intermediary subfields of L over K and also to this we have attached the

Galois group and we are looking at the subgroup of this group, so S of this they are precisely

the set of all H, H is a subgroup of the Galois group, H is a subgroup. So set of all subgroups,

so this definitely has 2 elements one is the trivial element and the other is the whole group.

Similarly this intermediary field has definitely 2 elements K itself  and L itself this is the

subgroups of  Gal(L∣K )  and we want to give a bijection between the 2 and actually we

have… There are obvious so you get the map, so the statement of the fundamental theorem is

following.
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So we are assuming now L over K is Galois finite always. When we have enough time in the

course I will come back to the not necessarily finite extension but here are assuming it is

finite  extension.  Then for every M intermediary field the extension L over M is again a

Galois extension and the maps one is from  F(L∣K )  to subgroups of  Gal(L∣K ) , the

map is any M going to the Gal(L∣M )  which is obviously subgroup of Galois group of L

over K because if somebody is M linear these are all automorphism as a M algebra of L

because M is bigger than K they will also be K algebra automorphism of L to L and because

they are M linear they are K linear. 

So therefore this is clearly a subset means clearly a subgroup that is clear, so the map make

sense. So this is one way map and the other way map is, I have a map this way also, so what

is the map? Given any subgroup H, H is a subgroup here we definitely have an intermediary

field because we can take fix points of L under the action of H. This is clearly will contain K

because K is fixed under every element of Galois group in particular every element of H. 

So K is clearly contained in here and these are the fix elements of L therefore there is this and

this  is  clearly  a  subfield  that  is  very  easy  to  see  because  elements  of  H are  K algebra

automorphism of L, so if an element is fixed under K algebra automorphism of L then it is

fixed under the inverse of that also and if 2 elements fixed then the composition also fix the

element, therefor this is clearly a subfield, so this is indeed a map from here to here. This map

I am going to denote by Gal(L∣–)  and this map I am going to denote by fix –L  then

what about these maps? 
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The assertion is the maps are inclusion reversing bijective maps which are inverses of each

other that means what? That is if I start with M and then go to under this map Gal(L∣–)  it

goes to Gal(L∣M )  this is my H now and then map these to FixGal(L∣M) L  and then I get

back M that means the composite of this map fix… Composite of these 2 maps is an identity

map. Also the other way that means I will start with H go Fix– L  this goes to the fix field

of H and then map it to Gal(L∣FixH L) then you get back H. 

This is Gal(L∣–)  so that means this maps are inverses of each other that means it gives us

interplay between subfields, intermediary subfields and the subgroups of the Galois group, so

one can study one to the other and the other way, so it is very important, then when we will

prove  this  now  and  I  am  going  to  make  this  more  finer.  These  are  called  Galois

correspondence of L over K, now this is the first step I am going to make this more and more

intermediate that means I am going to study what happens to the normal subgroups, where do

they go? And which intermediary fields will give a normal subgroup? 

All these we are going to analyse but first let us finish of the prove of this and as I said the

most important thing that I am going to use which I have used in the earlier proves also

named at the group Gal(L∣K )  is group operates on L naturally, the action is so natural

that an element of the Galois group, then automorphism and element of x so that operation is

σ , x that is going to σ( x)  that is the operation map that is why it is so natural. 
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So let us prove the fundamental theorem, so proof first the first part that is I have given a

subfield L, subfield intermediary, subfield M and I want to prove what? We want to prove L

over M is Galois that  is  the first  part  of the statement  and how do we prove some field

extension is Galois so that is I want to prove that the order of the Gal(L∣M ) , this order is

same thing as the degree, this is what we want to prove that means that L over M is a Galois

extension. Alright, so what do we know? We have given L over K is Galois, so that means

there is a primitive element or there is a Galois resolvent. 

So that is L as  K [ x]  for some  x∈L , so this is by definition is the smallest K sub

algebra of L which contain x which is also a field because everything is algebraic extension,

but then it will also be equal to M [x ]  because in general if the field… this M is bigger

then this is contained here but this is contained in L therefore they are equal, so therefore this

is equal. So first of all M is a simple so that is L is simple extension of M and the same is a

primitive element, same element x is a primitive element and therefore I know this side, what

is L over M and therefore I know degree of L over M this is nothing but the degree of the

minimal polynomial of x and I have to be careful because minimal polynomial of x over M. 

This is a polynomial with coefficients in M where X is 0 and the small x degree polynomial

because this L is M [x ]  and I want to show that this degree is nothing but the order of the

Gal(L∣M ) . Okay and we know that what is the degree of L over K? Degree of L over K is

because L is simple, x is a primitive element of L over K this is also the degree of minimal



polynomial of x over K, now it is therefore necessary to write in our notation which minimal

polynomial you are talking. So and what we know? 
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So  note  that…see  μx , K  this  is  minimal  polynomial  of  x  over  K.  This  is  actually

polynomial with coefficient in K and μx ,M  this is a polynomial with coefficients in M and

these polynomial ring is contained here because K is contained in there and L is contained in

there, so this is the polynomial with coefficients in M and this is also polynomial coefficients

in M, this is a minimal polynomial over M, this is one polynomial in M [x ]  where x is 0

therefore obviously by definition of μx ,M , μx ,M  divides μx , K  where? 

In M [X ]  because this is one polynomial where x is a 0 this is a minimal one and therefore

this has to divide in M [X ] . It is very important to write such things. Alright but we know

that because L over K is Galois this is if and only if what, all zeros of μx , K  this number

equal to the degree of  μx  because it is a Galois extension. This means all the zeros of

μx , K  lie in L and they have the same number that means number of zeros equal to that that

means all zeros are simple, right? So this is included in this equality, so this means 2 things

μx , K  splits  in  L[X ]  into  simple  linear  factors  but  this  is  the  factor  of  that.  Since

μx ,M  is a factor of μx , K  this was also factor into simple linear factors. So 1st of all this

is a factor therefore all of zeros are the zeros here and all are simple. 
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So that shows that implies μx ,M  splits into simple linear factors in L[X ]  but that means

L which is M [x ]∣M  is a Galois extension, so that was the first part we have to prove. Now

we want to prove 2 things namely… I will take this page we want to show that if I start with

M go here and then go to the fixed field then I get back M this is what I want to prove alright.

So we have noted that L over M is Galois so we started with M then we go to Gal(L∣M )

and then we go to the fix field of L of this but remember just now we have proved this is a

field this extension is Galois and this is its Galois group. 

So if I take the action of this Galois group on L the fixed points are precisely a base field, the

base field is M and this is precisely the fixed point of L with respect to this Galois group, so

this is clearly M because we proved whenever we have a Galois extension if I take the fixed



point of the action of the Galois group on a bigger field you get a base field, so because of

that… This was the statement 2 which I stated in the beginning of this lecture, so therefore

this is obvious, this is going to this is obvious. 

Now I have to prove that if I start with H sub group take the fix field FixH L  and then take

the Galois group Gal(L∣FixH L)  then I get back H this is what I want to prove but let us

see which thing is obvious, so these are the elements….so let me write  Gal(L∣FixH L)

these are  automorphism of L which fixes this  field,  so I  say H is  contained here that  is

obvious  because  take  any  element  of  H  that  is  an  automorphism of  L  over  K  but  this

automorphism fixes and I want this fix field is precisely all those elements of the Galois

group of L over K which fixes H but I already started with element in H, so they have already

fixes all these elements because these are elements which are fixed under all elements of H. 
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Therefore H is clearly contained here, so I just write here to remind you that fix field of H L

is precisely all those elements  y∈L  such that  σ( y)= y  for every σ∈H  therefore

which is clearly contained in the  Gal(L∣FixH L) . Now I want to prove the converse, so

this is a sub group this is also sub group of Gal(L∣K )  all are finite, so I will prove their

orders are equal so to prove equality here enough to prove that the order of H this order is

smaller equal to order of H. 

Order of Galois group of L over fix, this order is smaller equal to order of H. If I prove this

then this has to be equality here both are finite sets and this cardinality is more than this, so it



has to be equal and this is smaller so this is enough but what is the cardinality of this field?

Just now I prove that if I take any intermediary field then the extension is Galois and that will

mean that the order of the Galois group equal to degree of the field extension, so this is equal

to degree of L over FixH L  but what is this? 

This is nothing but, L is nothing but the same x is a primitive element of this, primitive

element of L over this, so this is same thing as FixH L  are join with x over… FixH L  but

this  is  nothing  but  the  degree  of  the  minimal  polynomial  of  x  over  this  fix  field  over

FixH L , so I want to show that the degree of the minimal polynomial is bounded by H and

then we are done. 
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So I will actually compute what is the minimal polynomial? So remember I want to know the

polynomial over the fix field I want to know what is the degree of the minimal polynomial?

So minimal polynomial of x over fix field of this is an element here, on the other hand I will

give another polynomial F, so consider a polynomial F which is product σ  varies over H

so that X−σ(x ) , so first of all note that these polynomials have coefficients in the fixed

field of H this, why that? Because how do I check a polynomial as coefficients in the fixed

field? 

I just have to take any element of H and I apply there, so for this note that if I take τ∈H

then tau of F which is F this is very easy to check apply tau to this product, push τ  inside

τ  is not doing anything to x but it goes here but then use the fact that H is a subgroup

therefore this is clear, therefore this is clear, so this is one polynomial with fix field where x



is 0 and the minimal polynomial also has x as a 0, so therefore by definition of the minimal

polynomial, minimal polynomial will divide this polynomial x. 

So minimal polynomial of x over the fix field divides F in this polynomial but in particular

that degree of this minimal polynomial will be smaller equal to this, so therefore degree of

the minimal polynomial  μx  over fix field of H this is smaller equal to degree of F and

degree of F is clear. Degree of F is nothing but the cardinality of H, so what we have proved

is degree of the minimal  polynomial  is smaller equal to this  but as I said that is enough

because this degree is…so that finishes the proof here that is what we wanted to prove. So

that proves that this you get back, so this compose it is identity in both ways so we have

checked that both are inverses of each other. Now it was very clear check that their inclusion

reversing  that  means smaller  the  subgroup bigger  the  fix  field  but  that  is  also  clear  and

similarly…
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So only thing to note is inclusion reversing, that will follow from the following of reason,

when M and M ’  are 2 subfield intermediary then what do you want to check? We want to

check that  μx , K  and  Gal(L∣M ’
)  which should be bigger inclusion reversing, so this

should be clear. This is clear because somebody M ’  linear then it will be M linear, so this

is clear. Similarly if H and H prime are 2 sub-groups of the Galois group then FixH L  and

FixH ’ L , what is the relation? 



Smaller  the  subgroup bigger  the  fix  field,  so  this  is  also  clear.  So  that  means  this  map

Gal(L∣–)  map reverses the inclusion and similarly the fix map reverses the inclusion, so

they are inclusion reversing bijection, so that proves all the statements what we made and we

will continue improving this correspondence because we will analyse what happens to the

normal subgroups for instance and some more things and normal subgroups corresponds to

what fields under the intermediary fields, so we will check that the normal field extension

precisely give what is called normal field extensions, so we will continue this in the next half.


