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In the last lecture we have defined norm and trace of an element of a field extension, so let

me write down the definition once again, so we started with the finite field extension L over

K finite field extension and for an element y in L we have defined 2 elements one is called a

norm of y this is by definition N K
L
( y )  this is nothing but the determinant of the K linear map

λ y  and this is an element of K, so therefore norm of L over K you can think it is a map from

L to K [ y ]  going to norm of y.

So what are the properties? First of all it is obvious that if a is in K then what is the norm of

a? So for that I will have to compute the metrics of  
λa  map,  

λa  is a map from L to L

multiplication by a, so z going to az, so remember a is in K therefore if I take any basis any

v1  to  vn  any basis of L over K then where will  λv1  will go?  λv1  will go to  a v1 , so



therefore  the  matrix  of  
λa  with  respect  to  the  basis  v  this  is  nothing  but  the  diagonal

[
a 0 ⋯ 0
0 0
⋮ ⋮

0 0 ⋯ a
]

, so therefore the determinant of 
λa  is a

n
 therefore 

λa  is a
n

. 

Remember this n is the degree of the field extension, so for base elements this a power that,

moreover it is multiplicative, so λ  if y and z are 2 elements in L then L norm of yz is same

thing  as  norm  of  y  times  norm  of  z.  This  is  clear  from  the  fact  that  determinant  is

multiplicative, determinant of 
λ yz  is same thing as 

λ y  composition 
λ z  this is clear. So if I

take determinant of this it is determinant of  
λ y  times determinants of lambda z and that

precisely  mean  this  formula,  so  it  is  a  multiplicative  map  from  L  to  L  it  preserve

multiplication. In other words the norm of 0 is… what is norm of 0? It is 0 because it is a

determinant of a 0 matrix, so actually one should say 1. 
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So  therefore  you  can  think  norm  is  a  map  from  Lx  to  Lx  and  this  is  a  group

homomorphism. Alright now about the trace, so what was trace of y that is also same notation

this is by definition the trace of this matrix 
λ y , so first of all note that what will be the trace

of an element in K if a is in K then the trace is nothing but n times a because the matrix is a

diagonal matrix in this case with respect to any basis a diagonal matrix with entries a, so



therefore trace is n times a. Moreover it is K linear so that means trace K
L
( y + z )  is same thing

as trace K
L
( y )+ trace K

L
( z )  , so therefore trace is a linear map from L to K. 

This trace is an element in K, so therefore it is a K linear map from L to K therefore it is also

called a linear form therefore it is a linear form on the vector space L, so therefore it is also

called a trace form this is the reason it is called a trace form and this is very important to

study separability but I do not need it right now it is more important for us to prove now what

other formulas if you assume the extension is Galois then can we say something what about

computation of norm and trace in terms of the Galois group. So all our methods should not

address always something about field extension in terms of the groups and conversely that is

always our motto in this course.
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So  I  will  write  corollary  1  to  our  theorem  which  we  proved  which  describe  minimal

polynomial, characteristic polynomial and also which said when can L be simple that is if and

only if the isotropy is trivial, so L over K corollary 1, let us take L over K to be finite Galois

extension and y is an element in L then I want to write down the formulas for the norm and

trace. Norm of y is nothing but which is by definition it was the determinant of y which is

nothing but product σ  in G σ( y) , so if you know y if you know the Galois group you can

computed easily. 

Trace of y is sum of the  σ( y)  where  σ  is in G and how do you prove this? The simply

follows so proof immediate from the equation characteristic polynomial of why equal to the



product σ∈G   X−σ( y )  because what is the norm? Norm is a determinant up to a sign and

trace is the second coefficient but this is as I said to check in the last lecture this is  
λ y , so

once you know this then what is the constant term? That is you have to put X equal to 0 but

that is precisely this. I think I have to right sign here so that sign will be (−1)
n  where n is

the degree of this field extension which is also equal to the cardinality of G because we are

assuming it is a Galois extension and G is the Galois group of L over K. Okay and this one is

clear  that  is  the  2nd coefficient,  so  this  is  also  the  minus  sign.  Alright,  so  these  are  the

formulas for the trace and norm.
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Now what we have kept pending is the finite Galois extensions as primitive elements, so that

I want to deduce now, so I will call it a corollary 2, let L over K be a finite Galois extension

with Galois group G with G equal to Gal(L∣K )  and what do you want to prove? We want

to prove that it is a simple extension, so then there are elements x∈L  such that isotropy at

x is a trivial. Remember if you prove this so I will just note it here, remember that from the

last lectures this will prove K [ x]  equal to L that is L is L over K is simple with primitive

element x. Note that I will also keep using the term x is a K algebra generator of L. So this

will prove our observation so I want to choose an element x, I want to show that existence of

elements so that the isotropy is trivial. This is very simple again let us prove this.
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Again I want to remind you what I am going to use in the proof, we will use the following

things again from linear algebra, so let V be a finite dimensional K vector space where K is

now let us assume infinite field. Actually it is not really fully needed to assume K is infinite,

what is needed is? Let me see what is needed is… I am assuming it is a finite dimensional

vector space, so let us assume at the dimensions of V over K is n then I will need to assume

that this field K has cardinality bigger than n that is enough but assume it is infinite, if one

wants to do it little bit more okay then what I want to say.

If you have a finite dimensional vector space over infinite field and let W 1  to Wm  be

proper subspaces of V that means no W i  is V, so that is W i  is properly contained in V

for all i. Then the union W 1∪...∪Wm  this is a proper subset of V. This union may not be a

subspace so I can only say it is a proper subset, so that means I can find an element in V

which is not in the union and I will simply tell you the proof of this pictorially and I assume

that you know this proof from linear algebra but the idea is the following. 

If suppose let us take K equal to ℝ  so that I can draw the picture, so I have 2 dimensional

vector space that is V is  ℝ
2  the real plane this is my vector space and now what other

proper subspaces? They are precisely the lines passing through the origin and if I take finitely

many lines I still have element outside the union namely this. The finitely many lines will

never cover the whole plane that is the proof of this and it is very easy, so I will assume that

you know this and resume to the proof of corollary 2, I am looking for x so that the isotropy

is trivial. 
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So proof of corollary 2 so what am I looking for? I am looking for element x in L such that

the isotropy at x is trivial this is what I want to prove, so I am looking at this subset. This is a

subset of L and what do I want to prove? I want to prove that this subset is nonempty, this is

what I will prove, this is need to be proved. Once I prove this, what does that mean? There is

some element x whose isotropy is trivial and that is what we wanted, so I want to prove this is

nonempty set, alright. So what should I prove? Okay so I will prove that the complement…

So what is this set first of all let us describe what is this set? 

This set is what, that means no σ  should fix… There should be σ … Isotropy trivial means

what? Let us write down the definition of isotropic. This is all the σ  in G such th σ( x) at

is x. Alright, so I should prove that if I take the intersection, let us look at the intersection

of…this intersection is running over σ∈G  and σ≠id . Okay and all those x such that

σ( x)  is  −x  is not 0. This means what? This precisely means  σ( x)  is not x that

means this X is not fixed by σ  and if I take intersection that means this x is not fixed by

σ , right? That means it is fixed only by identity and that will mean that for this x Gx is

identity, so these 2 sets are equal. Is that clear? 

Now what is the advantage? The advantage is the following, okay before I go on we want to

prove this  set  is  nonempty,  if  I  want to prove this  set  is  nonempty I  will  prove that  the

complement of this set is… If I want to prove this set is nonempty what do I have to prove?

Complement…so if I want to take the complement of this that will become union and then

the complement, so this is complement of whom? Let me write down then it will be clear this

is  same  thing  as  complement,  so  c  is  for  complement  of  the  union,  its  intersection  is

becoming union, union is over  σ∈G ,  σ  not equal to  idL  and this complement of

this is what? 

All those elements x∈G  such that σ( x)=x , this is a complement and I want to prove

this complement is nonempty because I have wrote this equal to this equal to this because if I

take  complement  of  the  union,  the  union  will  become  intersection  and  the  complement

condition is not equal, so therefore we need to prove that this is nonempty, so I will prove this

is  nonempty.  So this  is  nonempty,  this  is  what  we will  prove.  Alright,  now what  is  the

advantage? Advantage is the following, so that means what I have to check, what is this

subset? So now what is the last subset? It is the complement of whom? Complement of this G

is the finite union, G is the Galois group of a Galois extension. 
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So let me write the last one I want to prove this once again I will write on this page, so

complement of union  σ∈G ,  σ  not equal to  id L  and all those  x∈G  such that

σ( x)  equal to x. Now let us give this guy a name, I want to give the name to be… It

depends only on σ , all those relevant which fix a σ  let us give name W σ , so W σ

, σ  is in G, G is a finite group and W σ  is clearly subspace, so this is K subspace of L in

fact it is a kernel of σ  minus id L . 

σ  is a linear map, σ  is an algebra automorphism there in particular it is a linear map id

is a linear map the difference is also linear map, so it makes sense to talk about kernel of this

σ  minus id L  is a linear map from L to L, K linear map and therefore it makes sense to

talk about the kernel and kernel this is a subspace of L, so there are so many subspaces and

σ  is not identity, we are taking σ  not identity, so this W σ  is definitely not whole L

this is because σ  is not identity because if σ  is… When will this be equal? It means

σ( x)  equal to x for all x but that will mean  σ  is identity but  σ  is not identity

therefore these are finitely many subspaces of this vector space and now I want to divide

proof in 2 parts when the base field is infinite or base field is finite. 
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So case 1 K is infinite then what we know? We know that if I take this union W σ , σ

varies in G this is also proper subset of this. V is L this is by observation in linear algebra but

that will mean that I can choose an element x here which is not here so therefore there exist x

in L which is not in the union of W σ  but by definition the isotropy at x will be identity

only, so that proves case 2, case 2 is even more simpler. 

I do not have to use all  the above arguments,  so K is  finite and L over K is also finite

therefore L is also finite for you and not only that then I know that this Lx  is cycling group

because  it  is  a  multiplicative  group  of  a  finite  field  and  therefore  the  generator,  so  let

x∈Lx  be a generator of  Lx . What does that mean? It means every element of L is a

power of x, so this means this  Lx  is precisely identity that is 1, x,  x2  and can go on

long because L is a finite field, so it will go onto xq−1  where q is the cardinality of L but

then this L is a primitive element.
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But then L will  be equal to K at join x because this already contain all  the powers of x

therefore these are equal, so therefore x is a primitive element of L over K, so in both the

cases we have proved that every finite extension which is Galois has a primitive element, so

therefore I will write once more it is very important observation what we have proved is

every finite Galois tension is over K has a primitive element. There may be many primitive

elements and may not be one like a cyclic group can have more than one generator. This

theorem is called theorem of primitive elements. This was one of the main duration of Galois

when he created the Galois Theory. 

So because of that so therefore what we have completed our definition of Galois extension

that shows that Galois extension has a primitive element and once you know it has a primitive

element. Now the problem is how do you find the primitive element because once you find a

primitive element then we know how to calculate the Galois group because Galois group will

precisely map primitive element to the other root of the minimal polynomial of that primitive

element, so it is very important if one wants to do algorithms one wants to write computer

algorithms to find primitive element it is very important to know how… What is the recipe? 

So it is most of the time not very easy to find a primitive element and how do you find a

primitive  element  that  the  best  way  is  the  proof  I  gave  that  means  we  have  a  finite

dimensional vector space, we have finitely many proper subspaces and from that we have to

choose an element outside that, so actually this is very good algorithm because all you have

to find is those subspaces and find an element outside their union, so we will continue in the

next time. Next time…so far we have only defined Galois extension in the case where the



field extension is finite. Now earlier also I (())(29:03) if your field extension is not finding it

then one would like to have alternative definitions. 

In other words even for finite extension I want to find equivalent definitions or equivalent

conditions  so  that  the  field  extension  is  Galois.  We  have  only  our  definition  of  Galois

extension is only a numerical definition, it only says that Galois group and degree of the field

extension these 2 numbers are equal, so now one definition we will have a using the group

action  and  the  other  definition  which  is  used  in  most  of  the  text  books  that  is  normal

separable that will also be another definition. 

In addition to this I want to also define Galois extension in case when the field extension is

not algebraic  also or even algebraic  but  not finite  and eventually  I  would like to have a

definition where the field extension is not even algebraic because remember that we have

defined the Galois group even when the field extension is not algebraic because we are only

saying that look at the K algebra automorphism is one of the bigger field and this definition

does not require algebraic, okay. Thank you.


