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We are on our way to prove that finite field extension if it is Galois then it is simple. This is

what we want to prove and for this we are preparing and we use the action of the Galois

group of L over K on L and we want to decide how do you compute minimal polynomial and

characteristic polynomial of the arbitrary element of the field L, so we are left with proving 2

equalities and they are the following, so let me just recall that part. 
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So theorem what we want to prove, if L over K is finite Galois extension and y is an element

in L and G we are denoting the Galois group of L over K. Then we want to prove one

minimal polynomial of y is the product X−z  where z varies in the orbit of y this was one

and 2nd was characteristic polynomial of y is the product σ  in G X−σ( y ) , so we want

to prove this and as I said last time also it is more important to prove that the polynomial on

the right hand side, there are priory polynomials in L[X ] , so this RHX, RHS of 1 and 2

are polynomials in L[X ]  but we want to prove they are actually in K [X ]  this is what

is very important because by definition the left-hand sides are polynomial is in K [X ] . 

So this is what one has to prove and then proving one we need to prove that μ … this right

inside is minimal monic polynomial of y, so y is the 0 of this that is clear because y is in the

orbit of y, so we need to prove that this polynomial is the minimal one that means it is the



polynomial of minimal degree, so that y is the 0 of that polynomial this is what we want to

prove. It is clear that in 2 both polynomials have the same degree because the extension is

Galois, so since L over K is Galois, cardinality of G equal to degree of the extension and it is

clear from this side that the cardinality of this product is running over all σ  so cardinality

is G which is the dimensional this, so at least the degrees are equal in this case. 
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Okay, so let us prove 1, so proof 1 so let me call F to be the polynomial on the right side, this

is product z in G y orbit of y  X−z , so what is clear? It is clear that the degree of F is

cardinality of the orbit and F of y is 0 because y is in the orbit of y. Okay so I want to 1 st

prove that the polynomial F is in… So to prove F has coefficients in K, so what do you have

to prove? So I will prove that, so for arbitrary polynomial G in  K [X ]  or  L[X ]  and

σ  element in the Galois group G I want to define what is σG ? σG  by definition

you apply σ  to the coefficient of G, so if G is summation ai X
i , i is from 0 to some m.

These a i are elements in L then the σG  by definition summation i is from 0 to m σ  of

ai X
i  it is applying to the coefficients and to prove that F belongs to K enough to prove, so

to prove this we will prove σ  of F equal to F for every σ  in G us if I prove this, let us

prove this first, so to prove this have to apply σ  and see what it is can mark.
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So what is σ  of F? So F we know so σ  of F is applying σ  to the coefficients but F

is the product X−z  as z varies in the orbit and then I have to apply σ  to this but that

means this is for product z∈Gy  because σ  respect the multiplication, so this is same as

the product will come out and X nothing to do with σ , so X−σ(z )  but remember if s

is in the orbit  σ( z)  is also in the orbit. Not only that, therefore this…I could have just

replace σ … 

So this is same as this product is running over orbit of y, so I could have simply written this

as σ( z)  in Gy X−z . So this is same as F because you apply again apply… Okay there

is nothing much to say, so therefore σ(F )  is F, alright so therefore all the coefficients of F

are invariant under all the elements of G, so therefore all coefficients of F are fix elements of

the G operation that is they belong where? They belong to the fix field of G but this is K

because we have proved that if L over K is Galois then the fixed field is this. 
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So this proves that the polynomial F actually indeed polynomial in K [X ] . Now we have

noted that F( y)  is 0 since F( y)  is 0 μ y  must divide F were in K [X ]  because

μ y  is a minimal  polynomial  of y and this  F is arbitrary polynomial  of y, so arbitrary

polynomial where not arbitrary one polynomial why is 0, so therefore this F is in the kernel of

this substitution map and kernel of this substitution map is generated by μ y , so μ y  has

to divide F. Alright but now let  us compare the degrees,  so therefore degree of  μ y  is

smaller equal to degree of F. Remember both are monic F is also monic by definition of F. 

So both are monic polynomial 1 degree is smaller equal to this but now I want to prove that

degree of F is smaller equal to degree of  μ , I want to prove this. Once I prove this the

degrees will be equal and both are monic polynomial one divides the other, so that will imply

μ  equal to X, so once I prove this, this will imply μ y  equal to F since both are monic.

So I  want  to  prove this  alright,  so remember  again our  very important  observation  from

Galois theory that I want to prove therefore what? I want the degree of F I know what is the

degree of F, degree of F is cardinality of the orbit because F is the product of the linear

factors which arise from each element of the orbit, so these degrees I know and if I want to

prove this I should prove that this μ y  has so many zeros. 

If there are so many zeros then the degree of that polynomial will be at least that, so I have to

prove that, so we will prove that every element of the orbit G y is a 0 of μ y , so therefore

μ y  will have at least the cardinality of orbit number of zeros, so the degree will be at least



cardinality of orbit and that will prove what we wanted to prove. So take any element of the

orbit, so any element of the orbit will look like σ( y)  for some σ  in G and now what

was our observation? I want to use my observation namely if I have an element and element

of this Galois group.
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So what is the observation? σ  is in element in G and y was an element in L and y is a 0 of

μ y  then  if  I  apply  σ  to  y  σ( y)  is  also  0 of  μ y ,  so  that  is  simple  because

μ y ( y)  is 0 and apply  σ  to this equation and I apply  σ  to this equation,  σ(0)

which is 0 that is σ  of μ y   but σ  is an algebra homomorphism with respect to the

scalar multiplication with respect the sum and with respect to the powers of y also, so this is

same as μ y  of σ( y) , so therefore σ( y)  is also 0, so that shows this. 

This is the very important observation which is the crux of the Galois theory and I will use it

thousands of times I will uses, so what did we check? We check that  σ( y)  is the 0 of

μ y  that means whole orbit is containing the 0 set of μ y  and that is in L, so therefore the

cardinality this polynomial, so therefore the cardinality of the orbit is smaller equal to the

degree of μ y  and that proves what we wanted to prove and that finishes the prove that 1.

So I will just say this proves 1. 
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Now prove 2 it is about the characteristic polynomial but that is very simple because what we

want to prove? I want to prove χ y  equal to product σ∈G   X−σ( y )  this is what I

want to prove. First of all what is the degree of RHS? Degree of RHS equal to cardinality of

the group G which is the dimensions of L over K which is the degree of the field extension

and this  χ y  also have degree because χ y  is a characteristics polynomial of…this is a

linear operator on L and L is a K vector space of this dimension so therefore this is also LK,

so both have the same degree, both are monic. 

Yes so and therefore…well there is an easy way also to conclude, so both are monic, both

have the same degree and what do I know about χ y . Moreover this is from linear algebra

what we observed χ y  has to be power of μ , some power of μ  because since μ y

is prime polynomial in K [X ]  because it is a field extension. Now therefore what power?

Here the degree of χ y  is the degree of L over K which is cardinality of G because L over

K is Galois and on this side is what? So I want to know what can I write here, which power?

So that we may somebody here times degree of μ y  that is somebody, degree of μ y  I

know it is the cardinality of the orbit of y, so what can I do here there is no other choice than

the index. 
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So therefore what we observed is…so  χ y  has to be  μ y  power…no I said something

wrong the power cardinality of the isotropy. 
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Box is I want to write somebody here but I know this is the index of the isotropy, so how can

I get the order of G? I have to supply here cardinality of G y, so here you have to write

cardinality of G suffix y. So we approve this formula, already we approved that  μ y  is a

product of this, so now if you club one and you put it 1 and then you raise it so many times. 

So that is now easy to check that, so…now check I will just simply check that from this

implies χ y  is RHS of 2 which is what we wanted to prove and we know that we want to

…Already I have indicated in the last lecture at this proves that, so 4 was recall 4, 4 was the

degree of the field extensions K y over K. Remember K is here K y is in between and this is a

subfield of L and we want know when can the equality happen for which y this equality

happen, so we are interested in the equality here, we are interested in the equality here, so

when can that happen? 

So this we have noted this is nothing but degree of the minimal polynomial of y this is the

definition and this is clear and we have observed this and this is equal to cardinality of the

orbit, so cardinality of the orbit is the index of the stabiliser and when can equality happen, so

this equal to L over K which is we know it is cardinality G because this is L over K Galois

therefore when can equality happen here? When equality will be here that means, so this is

equivalent to saying this index should be one, so G y index is 1 means G y is trivial…not 1

index is the whole cardinality G that means G y is trivial. So therefore if you want to prove

that there is a primitive element and you must choose, we must show that there is an element

in the Galois extension who’s isotropic group is trivial, so that is what we want to prove.



Alright, so this we will prove but before we prove I want also defined important concepts

which is used for the future.
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So recall, I would say recall again from linear algebra, the 2 important invariant so f is a

linear operator on a finite dimensional vector space. V finite dimensional K vector space and

f is K linear then I told you to this we have 2 polynomials  χ f  and  μf , the minimal

polynomial  χ f  is a characteristic polynomial and this  χ f  divide this not only divides

they are the same prime factors. 

This is the determinant of X identity matrix n cross in identity matrix minus the matrix a

which  this  matrix  we  got  it  by  using  by  choosing  arbitrary  bases  and  n  dimensional,

dimensional  of  V  is  m  and  this  is  a  monic  polynomial,  so  this  polynomial  looks  like

Xn+a1X
n−1

+...+an  and where a1  to an  there are elements of the field. It is monic

polynomial of degree and particular interest are this coefficients as I said these polynomials

does not depend on the basis chosen that is because determinant of 2 similar matters is the

same and if you change the basis this a will change into the similar matrix and therefore one

checks easily that this determinant does not depend upon the basis chosen. 

So this  is  the characteristic  polynomial  of  f  and all  these  coefficients  are  therefore  very

important and they are good in variants and out of the 2 the last one that is the constant term

of χ  and coefficient of  Xn  are of particular importance and what are they? They are

therefore  so  first  of  all  this,  this  is  up  to  a  sign,  so  (−1)
nan  this  is  nothing but  the



determinant  of f  that  is  clear  because I  put X equal to 0.  When I put X equal to 0 it  is

determinant of - a, so that means minus I have to get rid of minus how many times as many

as rows are there so there are precisely n rows so I multiply by (−1)
n  and then that is the

determinant and what is a1 ? a1  is minus the trace of f. 

This is a trace of f, trace is nothing but the sum of the diagonal entries, so that again does not

depend up on the basis chosen, so these are 2 very important invariants of the linear operator.

Similarly the remaining coefficients also have nice meaning like this but that we do not need

it here but they can also be describe in terms of this matrix and they will in fact be up to a

sign. Sum of products of r at a time elements of the… They are related with the minors of a

higher minors of a these are only we are taking one by one minors and here we are taking the

full minor, so the definition I want to make is the following. 
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Now we have a field extension, finite field extension and y is an element there and we have

this linear map now λ y  this is a map from L to L multiplication by L and z going to y z.

This is clearly K linear it is not L linear, it is K linear it is not a K algebra homomorphism

also because one does not go to one, so it is only K linear map that means this λ y  is an

endomorphism of the vector space and not K algebra homomorphism, it is an endomorphism,

so  therefore  it  makes  sense  to  talk  about  characteristic  polynomial  of  λ y  minimal

polynomial of λ y  but this is same thing as characteristic polynomial of y and this is same

thing as minimal polynomial of y that is easy to check this equal this. 



So I will strongly recommend you to check this precisely, check this equal it is. Alright once

you check that it is clear what is the norm of… That is also called norm of f, so the norm of y

is by definition determinant of  λ y  that is the norm of y, so to be more precise in the

notation norm of L over K of y and trace of y is by definition again trace of this λ y  L over

K and both these are elements in K and now in the next lecture we will study more properties

of these norm and trace. Here I would like to make only one comment that his concepts are

defined for arbitrary finite field extension, arbitrary I am not assuming the field extension is

Galois but I will use it to prove that Galois field extension is simple, so we will continue after

the break, so we still have to prove that Galois extensions are simple and we are almost will

almost finish the proof in the next lecture. Thank you.


