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Lecture 03 – Polynomials and Basic properties

In the last lecture we saw some examples of fields. In today’s lecture we will see more examples

of fields. And more generally we will see some examples of rings also. Recall that last time, last

lecture we saw the field of rational numbers, field of real numbers, field of complex numbers. So

ℚ⊆ℝ⊆ℂ . In addition to this standard number systems that we study in schools and colleges,

in addition to that we have seen these module operations, ℤ  mod p, where p varies in the set

of prime numbers.
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So this is a family of finite fields. This is also called finite fields. These are finite sets and on that

there are this congruent mod p is a binary operation. More generally I will should you there are

other examples of finite fields as well. But before I do all these things, I need more general

examples of rings. The only examples of rings we know now so far are apart from these fields,

the ring of integers, is ring of integers.

And I  want  to  construct  more  examples  from the  given examples.  That  will  always  be  our

strategy to construct more examples from the given examples. So this process will be natural. So

if I take instead of p, any n, natural number, lasting also this ℤn  , this is also ring, it is a finite



ring. So in general when one says ring, R is a ring, that means R is a set and it had two binary

operation, addition and multiplication.

And these multiplication and additions are connected by distributive laws. And obviously R with

the addition like in the case of field, this is a Abelian group and R with multiplication this is only

a monoid. So I remind you monoid means a set with the binary operation which is associative

and it has a neutral element. And that neutral element is usually denoted by 1R  or simply 1,

means there is no confusion.

And additive identity is denoted by 0R  which is also denoted by 0 when there is no confusion.

So this is a ring and when we have two rings, then usually one compares them like a set, like we

were comparing the sets by maps. So these maps should not be just arbitrary maps but they

should be compatible with the ring structure. Ring structure means these two binary operations,

plus and multiplication.

(Refer Slide Time: 4:33)

So when I have two rings, R and S, before I go on more generally, when I said rings, even earlier

I always mean commutative. That means anyway the addition operation is commutative but in

addition to that the multiplication operation is also commutative. And we will assume always

that  ring  has  always  multiplicative  identity.  Ring  always  has  multiplicative  identity,

multiplicative neutral element. That means 1 always exists, 1R  exist always in our definition.

This is standard assumption. I will not keep saying again and again.



All  rings we will  consider  in  this  course will  be commutative  rings with unity.  That  means

multiplicative identity. When it is not the case I will specify it explicitly. So when we have two

rings, R and S, so remember that these have addition and multiplication. But we are not going to

make  distinction  between  the  notation  because  otherwise  it  might  become  more  and  more

complicated to write it.

So a map ϕ  between the set R to S is called a ring homomorphism. Actually what I am doing

right now is a part  of my prerequisite,  I  want to assume in this  course. But for the sake of

completeness I want to recall some basic definitions. This means as Abelian group, so (R,+) is

called additive group of R. And (S,+) plus is called additive group of S.

If I think of this phi as a map from this Abelian group to this Abelian group, it should be a group

homomorphism. That simply means that this phi restricts the addition. ϕ(a+b)=ϕ(a)+ϕ(b) ,

for all a ,b∈R . So remember while writing one should be clear that when you write this plus,

that means you are adding in R with respect to + in R. And when you are taking images and

adding them, you are adding in S.

So that means this plus, though they look the same symbols, this is in R and this is in S. So this is

clear from the writing. We cannot be going specifically, this is in R and this is in S, otherwise we

will not lead to much material in this course. So second one is, it also respect the multiplication.

So (R,.) to (S,.), the same field, is a monoid homomorphism. Monoid homomorphism means it

respect the multiplication.

So ϕ , now multiplication,  ϕ(a) .ϕ(b)=ϕ(ab) , for all a, b in R. And again I do not, only

just now the last time I will say that this multiplication is in R. This multiplication of the images

is in S. In addition to this, usually it is assumed that ϕ(1R)=1S . 1R  means a multiplicative

identity in R and 1S  means multiplicative identity in S.

This also I will drop eventually. I will just simply write ϕ(1)=1 . Usually in many books this

is  not  assumed  but  we  are  assuming  this.  So  a  map  between  R  to  S  satisfying  both  these

properties is called a ring homomorphism.
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For example, so any concept we should be supporting by examples. For example, let us take our

ring  ℤ . And we have this ring  ℤn  , this is modulo operation here. This plus, dot, you

remember and this is decent. This again we should suppress it but only for today let me just do it.

So the map here is, just take any a in ℤ  and map it to a bar, a bar means equivalence class of

a under this binary operation congruent modulo n.

So we check that, one should check that. So these are examples. One checks that this map ϕ

is a ring homomorphism. So that means what do I have to check? I have to check that if I take

two integers a and b and add them usually and take the image under this ϕ , this is a+b  .

But remember a+b  is defined as usually add that a + b and take the remainder of that a + b.

So these two operations are same. That is what we have to check. That I will leave it for you to

check. This is for every a and b integers.

So that will mean that this phi restrict the, respect the addition, plus. So strictly speaking I should

write suffix n here. But I will not do so. And also this map usually, I will come back to more of

this type. Similarly we will have to check that ϕ(a .b)=ab=ab . And this dot is actually mod

n. So this is a very natural example of a ring homomorphism. And this is not so special. Soon I

will give you more examples of this kind.

But second thing I will leave it for you to check. Every ring homomorphism from ℤ  to ℤ

let us say,  ℤ  to  ℤ . If I have a ring homomorphism, then what can it be? Let us try to

analyze. So first of all, note that by our definition 1 has to go to 1. So ϕ(1)=1 . Moreover, if I



take  any  integer  n,  if  n  is  positive  in  the  natural  number,  then  phi  n  which  is

= 1+1+…ntime
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So that means what we noted is phi of any n has to be n times ϕ(1) . That means this phi is

uniquely determined by the image of 1, which is 1 only in this. So this is n. So that means we

check that the only ring homomorphism from ℤ  to  ℤ  is identity map. So the only ring

homomorphism from ℤ  to  ℤ  is the identity map which is denoted by idℤ . This is a

map ℤ  to ℤ , n goes to n. So that is only. In fact, why this?

In fact, more generally, if R is any ring, then there is a unique ring homomorphism from ℤ  to

R. And it will be, obviously it is determined by, if you call it ϕ ,  that is uniquely determined

by ϕ(1) .  ϕ(1)  of 1 determines  ϕ . In fact, if I take any n,  ϕ(n)  will be equal to n

times ϕ(1) . Remember n times ϕ (1) means ϕ(1)+ϕ(1)+ϕ(1)+.. . , added n times.

When I say, when n were negative, then one should use the additive inverses of this one. So this

is  when n  is  bigger  equal  to  0,  and when n  is  negative,  then  it  is  in  fact  n  of  −ϕ(1) .

Remember −ϕ(1)  makes sense in the ring because it is the additive inverse of ϕ(1) . So

this is very important map, I will soon use it. I will soon use this to define something about the

field. Anyway, so we have ring homomorphism.



So ring (homomorph), in every subject like if you are studying group study, then you use group

homomorphism  to  compare  two  groups.  If  you  are  studying  ring  theory,  you  use  ring

homomorphism to compare rings. If you are studying field theory, then you use homomorphism

of  fields.  Homomorphism  of  fields  are  nothing  but  homomorphism  of  the  rings.  So  you

compared them. If you are doing only set theory, then you say maps to compare the sets.
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So one more example of natural ring, I want to construct. These are so called polynomial rings.

So first of all, I want to spend couple of minutes for polynomials. So polynomial means what?

Polynomial means an expression like  a0+a1 X+ ...+an X
n ,  a0 , a1 ,…,an∈R .  So these are

polynomials with coefficients in the ring R. It is an expression like this.

Now one may say what does one mean by expression? So one easy way to think about them is,

you see,  if  you know the  coefficients,  you know the polynomial,  but  you should know the

coefficients and their positions. So which coefficient goes where? So one way to think about

them instead of this expression, think about a tuple, (a0,a1, ...an ,...) . It is not a finite tuple. It is

a tuple, actually one should say ℕ  tuple.

That means the components in this tuple are numbered by using the set of natural numbers: 0, 1,

2, etcetera, n. So this tuple, I should have written here 0, after that 0, 0, 0, 0, all the way. So this

tuple has entries, these are the components. So this tuple is an element of R, their entries are in R

and their N tuple is denoted by like this, Rℕ . So that is just a map from ℕ  to R. But we



have more than arbitrary map. We have only the finitely many coordinates of this tuple are non-

zero. That I want to write in a notation like this: R(ℕ) .

This means they are n tuples with entries in R and only finitely many entries are non-zero. So

eventually after some stage all the entries will become zero. So either think like this or think like

expression  like  this.  So  this  position  a1  you  put  a  symbol  X.  This  position  you  keep

increasing the powers of X. So that is typically one thinks about polynomial. Also I want to

remind you that when I said yesterday that the quadratic equations, cubic equations, bi-quadratic

equations,  et  cetera,  from there to progress to the arbitrary polynomials,  it  took longer  time

because there was no notation for polynomial.

People at that time were not very careful in notations and also meanings and so on. So the person

who did this first systematically was Viete. This was in 1591, he was a French mathematician.

More about this I will say when I prove some result. So now if you have two polynomials, so

polynomials are usually denoted by f(X). When there is no confusion, we will only write it f. f is

a polynomial, that means expression like this.

Or if  you want  to  think,  think like  coordinates.  But  I  would recommend we start  with this

because we were used to that even from earlier curriculum like school, college, et cetera. So that

is a polynomial. Where the last coefficient is non-zero, of course we only have to note up to

where, where it is non-zero and after that there are zeroes. Now a_n, the last time when it is zero,

that n is called the degree of this polynomial.

So this n is called the degree of f, if a an  is non-zero. And all other terms are zero after that. a

m is zero for all m bigger than n. Then this is called a degree. Let me remind you degree of, what

is, 0 is also polynomial. These all the coefficients are 0, it is (0, 0, 0,...) tuple. So that is called a

zero polynomial. So zero polynomial is same thing as 0. I will write it 0 because all coefficients

are 0. But this is also the tuple (0,0,...).

And the degree is not defined then because what was the definition, there is only the last one

which is non-zero. But there is no non-zero entry in this. So this degree of zero polynomial is not

defined, that one should note carefully.
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So degree of 0 is not defined. So also called polynomials over R. And the set of all polynomials

over R is denoted by, set of all polynomials over R, this set is usually is denoted by R[X]. And

remember  my  writing  always  variable.  This  X  is  called  also  variable.  X  is  a  variable  or

indeterminate. Variables and indeterminates are always denoted by X, because x are used, you

will see, they will be used for evaluations.

So and this  square bracket is also denoted for the polynomials.  Later on I will  say they are

rational  functions.  So  now  on  this  set,  there  are  two  natural  operations,  addition  and  also

multiplication, so that it becomes a ring and then we will say that it is a polynomial ring over a

ring R. And what  are these operations? So that  means what? I have to write,  if  I  have two

polynomials f and g in R[X], then I have to tell you what is f plus g. This is what?

So very simple. You take f and g and think of them as tuples. So there are two tuples with, they

are  numbered  by  the  natural  numbers  and  only  finitely  many  are  non-zero.  So  I  will  add

corresponding coordinates and put them as coefficients. Or think of this new tuple. So that is

called the f + g. So let me write it only once.
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So  if  I  have  f=a0+a1 X+…am X
m ;  this  a  m  is  non-zero.  So  m  is  a  degree  of  f.

g=b0+b1 X+...+bnX
n , where b_n is non-zero. And how do I add f plus+ g? That is you add

the corresponding coordinates.  (a0+b0)+(a1+b1)X+.. .  and so on. Now this may be bigger,

that may be bigger, so add corresponding coefficients.

So you will, if they are equal, then you will interpret the same position, otherwise you will go on

to the next one. So that is the addition of polynomials. Now one has to check that this addition is

associative  and the polynomial  zero  is  the additive  identity  and with  respect  to  plus+ these

polynomials form an Abelian group. So this is Abelian group. This I will not check. I will simply

say check. One has to check.

Similarly there is a product notation, that is given f and g like this. I want to define what is define

what is f . g, or f multiplied by g. This is little complicated. So it is again, so f is like this, g is

like this. When I want to write f time g, so I will write in this notation: c0+c1 X+ ...cr X
r . Now

I have to tell you, what are c in terms of a and b. So  c i  is by definition ∑
k=1

i

ak bl . Now

remember this multiplication is in R and the sum is also in R.
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So this definition makes it a multiplication on this set and with respect to that, now I will simply

directly  say  that  this  (R[X],+,.),  this  is  also  commutative  ring.  And  this  ring  is  called  a

polynomial ring over R. Or also one says polynomial ring with coefficients in R. So we have

extended the definition of addition and multiplication from the ring R to the polynomial. And we

have the natural from R to R[X], namely a going to a. These are called the constant polynomials.

And  this  is  a  ring  homomorphism.  Not  only  arbitrary  homomorphism  but  this  ring

homomorphism is injective. That means it is injective as a map. That means different elements

go to different images. Okay, we will continue our lecture after the break. Thank you.


