
Galois’ Theory
Professor Dilip P. Patil

Department of Mathematics
Indian Institute of Science Bangalore

Lecture No 29
Digression on Linear Algebra 

In the last time we saw one example of a simple extension where minimal polynomial does

not split into linear factor in the field L, so it is not Galois. Now I want to show an example

of a field extension which is which the 2nd condition can also fail so that is I want the field

extension L over K. 
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So example L over K I want and such that the degree is more than this degree should be

strictly bigger than the cardinality of the Galois group, I am writing such an example, so

therefore L over K cannot be Galois. Alright, so it will not be… because it is not Galois it

will not be simple extension because we are going to prove soon the Galois extensions are

simple extensions, so and how do I give such example of course one easy way out is I want

an example of a field extension where degree is more than one but the Galois group was

trivial, so in other words I want to rigid field extension. 

So the  Galois  group is  minimal  that  is  only  the  trivial  group identity  element  and field

extension has more degree. Alright, so in the base field and K to be ℤp  and then a rational

function field in 2 variables  K [U ,V ] ,  U and V are indeterminate  over K and this  is

precisely the coefficient field of the polynomial ring in 2 variables over ℤp . This is my

base field and I am looking at the polynomial f, f is a polynomial in this field which has 2



factors (X p−U )(X p−V )  these are the 2 factors and I am going to write what are the roots

of, what other zeros of f, zeros of f are precisely there are only 2 zeros u and v with up=U

and v p=V  that is very easy to check 1st of all if u is a 0 of this polynomial. 

Let us take an element u in the…so this polynomial is a polynomial with coefficient in K, so I

definitely know there is a field L which is field extension of K such that f splits into linear

factors in L[X ] . This we know such a field exist because remember Kronecker’s Theorem

which says that given any polynomial f we can enlarge a field so that all zeros of this f lies in

this field and I only take the field L which is obtained from K which is obtained from K by

attaching all zeros of f. 
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So in the notation also one will write this L is K attach with all zeros of the polynomial f and

I know all the zeros they are precisely u and v there cannot be any other 0 because if u is 1

zero that means u power v will be equal to u and once u power p equal to 1 that means they

are the zeros of... U is the zero of this phenomenal and once u is the 0 then  X p−U  is

up  and this polynomial is nothing but (X−u)p  because p is the characteristics of the

base field which is positive therefore once I know 1 zero of this polynomial I know all the

zeros of this polynomial. 

Similarly once I know 1 zero of this polynomial then I know all the zeros of this polynomial

and they are precisely u and v, so therefore there are only 2 zeros v p  what it shows is V of

f equals to u, v so there are 2 zeros. Alright so what is their degree? 1st of all the degree of the



field extension is definitely more than one that is because u cannot belong to K and v also

cannot belong to K for the same reason, u cannot belong to K is very simple because that is

easy to check, so I will just write here check, so therefore degrees is definitely more than 1. 

Actually it is not too difficult to prove that the degree is actually p2 , so I will also say here

check degree is p square and on the other hand what is the Galois group? Galois group I want

to compute and I want to show that Galois group of L over K is nothing but only the identity

map of L, so that is because remember the most important observation of the Galois theory

which says that if u is a 0 of a polynomial then and any σ  is any automorphism of L over

K then σ  of that is also 0 of the same polynomial. 

So therefore I want to apply that to this f, so u is a 0 of f and see if σ  is any automorphism

then  σ(u)  is also 0 of f but  σ(u)  is actually more than that,  σ(u)  is a 0 of the

minimal  polynomial  of  not  only  this  but  v  of  minimal  polynomial  of  u  but  minimal

polynomial  of  u  is  nothing  but  X p−U ,  this  is  minimal  polynomial  and  f  is  not  the

minimal polynomial, this is a minimal polynomial of u over K, so therefore and the only 0 is

u,  so therefore  we have no choice  but  σ(u)  has  to  this  u.  Similarly  v is  a  0  of  this

polynomial f and minimal polynomial of v is X p−V , so therefore that forces Sigma v is

also equal to v that means every automorphism of the field extension L over K maps u and v

to themselves but remember the σ  is uniquely determined by its values on u and v. 

So σ(u)  is uniquely determine by this pair which is u, v so therefore you have no choice

σ(u)  has to be identity, so this proves that the Galois group is only identity, so that in

place σ  has to be identity on L, so that proves our assertions, so these extension cannot be

Galois extension. In this case what fails is the fact that there are no automorphism at all of the

nontrivial field extension, so this can also happen but this happens in characteristics p. We

will come back to this in a retail way once we have enough vocabulary connected to the

Galois group and field extension. 
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So now the next goal is to prove that the Galois extensions are simple, so I will write a goal

here so L over K finite extension, finite Galois extension then I want to prove, this is our goal

L is simple over K or that means that is L has a primitive element over K that means L is

generated as K algebra by one element this is also around bracket because we are algebraic

extension, so I will also keep saying L is cycling K algebra that means as an algebra over K it

is generated by one element that is what we want to prove. Alright and what will be our

missionary? 

Remember whenever you have a field extension L over K finite field extension then we have

a group attached to that namely the Galois group and this is the finite group and this group

obviously acts in a natural way and this operates on L, so and it operates on L means given

any element x in L I have 2 things attach that namely the orbit of x those are the G multiple

of x and the isotropy  Gx  this is a subgroup of g,  g∈G  let us call this group as G,

g∈G  such that g of x is x. I would prefer to denote elements of G as σ , τ  et cetera, so

that means this is precisely all those fixed points of… x is a fixed point of everybody that

means σ( x)  is x for all  σ . These are the 2 objects attached to that and we know the

relation between them also the cardinality of the orbit that is very important.
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So I will just write that because we will soon use it we know this was Lagrange, it says

cardinality of the orbit equal to the index of the stabiliser, index of the stabiliser is precisely

the number of left cosets of Gx in G or number of right cosets of Gx in G both these numbers

are same for arbitraries of group of an arbitrary group, so this is what I want to use it, so let

me state a theorem now, so theorem this is what we will prove and as a consequence we will

prove that the Galois extensions are simple, so L over K Galois extension and G is the Galois

group. Okay let us take y arbitrary element of L we want to prove at least one y there so that

L is generated as a K algebra by that y. 

So I want to write down what is the degree of K ( y )  over K and when will it be equal to

the degree of L over K in that case they will be equal, so note that K ( y )  is contained in L

and it contains K and we are hoping that we can choose y so that equality holds here that is

our aim and that can happen only when the degree of L over K equal to degree of this over

this, this degree I know, the degree of this extension we know it is degree of the minimal

polynomial of y, so I want to choose y so that the degree of L over K equal to degree of

μ y  this is what our aim is? 

So I am interested in finding out what is the minimal polynomial in terms of, of course the

group okay, so what do I say? So I will write down formulas so μ y  minimal polynomial of

y is nothing but look at the product X−z , where z belongs to the orbit of y. Now I want to

prove this, this is not obvious because this side is where, where is this polynomial? Apriori



this polynomial is in L, the coefficients are in L because z are where? z are in the orbit of y,

so they are apparently in L[X ] . 

So this polynomial  is in  L[X ]  but to show that this equality  I have to show that this

polynomial equal to μ y  to show this I have to show first that the coefficients are in K and

not only that this is minimal polynomial also I have to say. This polynomial is of the least

degree polynomial and y is zero that is obvious because y is an element of the orbit, every

element belongs to its orbit, so 0 is obvious. Now I have to show that 2 important things the

degree the coefficients are in K and it is a minimal polynomial that means it is a minimal of

the smallest degree polynomial, these 2 things I have to show. So this is an assertion 1, 2 now

χ ( y )  so let me remind you, so this is remembering from linear algebra. 
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So I will write it record from linear algebra, what do I want to recall? So whenever I have a

vector  space  V,  V is  a  K vector  space  and linear  operator  on  V,  f :V→V ,  K linear

operator,  K linear  map,  so  it  is  an  element  f  belongs  to  EndKV  that  means  it  is  an

endomorphism as K, not K algebra, K algebra does not make sense, it is a K linear map that

is  this  and  now  with  this  we  have  attached  to  polynomials  one  is  the  characteristics

polynomial of f and the other is minimal polynomial of f, minimal polynomial of f is the

monic polynomial of the smallest degree so that μf  when I substitute X equal to f it is 0

operator. 

Similarly, so what is the characteristics polynomial? Characteristic polynomial is defined by

using the determinants and the characteristic polynomial makes sense when the vector space



has finite dimensions, so we are assuming that is the finite dimensional vector space and what

is the characteristic polynomial? You look at the determinant of X identity matrix minus that

matrix a where this a is a matrix it is m×m  matrix where m is this dimensions and entries

of this matrix are precisely a ij and these entries are determined by… this is with matrix of f,

matrix of f with respect to some fixed basis v. 

How are they defined? Just for the sake of recall, so they are defined by using the metrics f

and the basis v, v has precisely n element because the dimensional v is n, so let us take this

fixed basis and a ij are determined by for every j from 1 to m, f of v j  this is m element of

v, so this can be written uniquely as aij v i , i is from 1 to m, so these equations gives you

entries of these metrics and if I take determinant of this that means the diagonal entries x

minus ai and of diagonal  are the negatives of the original  then this  determinant  does not

depend on the basis and therefore this determinant is a polynomial…it is clearly it is monic

polynomial of degree m with coefficient in K because this aij  are elements of K. 

So this polynomial χ f  looks like Xn+a1X
n−1

+...+an  where a1  to an  are elements

in K, so that means this polynomial is in  K [X ]  and Cayley Hamilton theorem says that

χ f  if I put x equal to f then χ f , f is zero this is precisely Cayley Hamilton theorem and

because this  μf  is a minimal polynomial with the property that  μf  on f is zero that

shows that μf  divides χ f , so this divides χ f  in K [X ] . 
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 So I will write in the next page, so this is very important,  so what we noted that  μf

divides χ f  in K [X ] . This follows from 2 facts the Cayley Hamilton and the definition

of the minimal polynomial but this is not good enough for our purpose, so there is a more

finer…these divides is a crude observation, so I want to make it more precise. So moreover

and there is very important for us, moreover look at  χ f , this may or may not be trying

polynomial in  K [X ] , so this will definitely has a prime factorisation and I am going to

write prime factorisation of this in K [X ] . 

So  that  is  π1
α1...π r

αr  where  π1  to  π r  are  distinct  monic  prime  polynomials,

polynomial  is  in  K [X ]  and they occur with multiplicity  α1  to  αr  and they are

nonzero  natural  numbers.  Actually  when  I  say  prime  polynomials  they  are  monic  by

definition so I need not ride monic again, so that is a prime factorisation of χ f . If I write

prime factorisation of  μf  at will also look like  π1
β1...πr

βr  where the same π r  is and

β1  to  βr  βi  is they are smaller equal to  αi  there is no wonder because  μf

divides χ f  but what is more important is βi  are bigger equal to 1, so that means what?

That means μf  and χ f  have the same prime factors in K [X ] . This is very important

statement. In other words whatever prime factors appears in χ  that should also appear in

mu and convers is obvious because if a prime factors appears in  μ  it has to appear in

χ f  but more important prime factors of μ  also prime factors of χ  also appears in

μ  definitely with a nonzero exponent. 
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Now I am going to use in this statement, so now come back to our situation our situation was

this, I have to prove the μi  is this and I want to now write down what is χ y , so χ y

is…no χ y  should have degree, how much? Now the vector space I am considering is L

over K, vector space I am considering is L over K so that means I have to know what the

dimension of L over K and dimensional of L over K is precisely the degree, so remember L

over K degree is precisely the dimensional of L over K and let us call this as n, so that means

this χ y  should be polynomial of degree monic polynomial of degree n but n because we

are assuming it is a Galois extension this n is also equal to the order of the Galois group. 

So that is order of G that we know this is because L over K is Galois that is the definition of

Galois extension, so therefore χ y  should have degree equal to order of G, so this  χ y

claim it  is  equal  to  product  σ∈G , X−σ ( y ) .  Remember  σ( y)  are  elements  of the

group…  σ  is  an  element  in  the  group  so  how many  elements  are  there?  There  are

precisely n elements and I am looking at this linear factors and multiplying them, so therefore

definitely χ y  has degree n so this is obvious, so χ y  is monic is also obvious and degree

of χ y  is also n that is also obvious. What is not obvious is the coefficients are in K that is

one thing, so this is our 2nd claim.
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The 3rd one is now, the question is I know I want to use the fact that χ y  and μ y  has a

same frame factors,  so  χ y  and  μ y ,  1st of  all  note  that  μ y  is  prime polynomial

already, it is a monic polynomial of the field extension because what do we know? We know



that  K [X ]  mod ideal  generated  by  μ y  this  is  actually  isomorphic to  K [ y ]  and

K [ y ]  is a subfield of L so therefore this residue algebra is definitely a field that means

μ y  generates  a  nonzero  time  ideal  therefore  in  particular  μ y  has  to  be  the  prime

element therefore μ y  is a prime element, so therefore there is no other prime factor. 

So if I have to write the prime factorisation of χ y , what will it be that? That will be χ y

and there is no other prime factor, so only which can happen is the power can occur and now

I want to write down that power and that will be the observation 3, so that power is nothing

but  cardinality  of  the  isotropy,  this  is  the  isotropic,  this  is  suffix  y,  so  that  is  the  3rd

assumption. Once I know this then I can…the 4th now I just had to write down what is the

degree of…so 4th we are interested in the degree of these extension  K [ y ]  over K these

extension degree is precisely degree of μ y  but degree of μ y  I will read it from 1 that

degree of μ y  is nothing but cardinality of the orbit of why but cardinality of the orbit is

precisely the index of the stabiliser. 

So when can this degree be equal to the… See we are interested in when can this be equal to

L over K because I am interested in knowing when it is L over K because if I have this then L

will be equal to K [ y ] . When can this be equal to…and this I know it is n which is order

of the group, so when can this order of G and when can the isotropy will be equal? When this

subgroup has to be trivial? So therefore this equality holds that is the assertion 4 this equality

holds if and only if the isotropy at y is the trivial support. So that means if I have to prove that

the given Galois extension is simple I have to find an element y, so that the isotropic at y is

the trivial isotropy group? 

Okay with this I will stop and we will continue the proves of this 1, 2, 3, 4 actually 4 there is

nothing 4 I have indicated how to prove 4 because this was the only nontrivial track there and

the others were just trivial, so I have to prove 1, 2, 3 and 3 also I have proved because I know

the prime factorisation of mu and therefore I will know prime factorisation of chi I only have

to find the power and therefore that is also clear  because the degree mu is the orbit,  the

cardinality of the orbit and therefore degree of chi will be equal to order G and I have to

supply this correct power, so really I have to prove only 1 and 2 and which we will prove in

the next lecture.


