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So in the last lecture we have seen the connection between the degree of the field extension

and the order of the Galois group, so let me recall briefly that in this course we are studying

field extensions with the help of groups and for arbitrary field extension L over K this is field

extension. The group we are talking about is the Galois group Gal(L∣K )  this group was

precisely the automorphism of the field L as K algebra, L is a field over K therefore L is

thought as a K algebra over K and we are looking at the automorphism of that algebra and

that is clearly a group because composition of automorphism is again automorphism. 

So it is a group under composition. In fact this is a subgroup of this is a subgroup of S (L)

the permutation, this permutations of L is a very big group. They are only bijective from L to

L and automorphism are particular bijections namely they are the ones which preserve the

addition  and multiplication  and also 1 goes to 1,  so these group was first  considered by

Galois and in the whole course we are going to study field extensions by using this group and

this intimate connection is precisely called Galois theory and what did we proof so far is this

was the theorem we proved. This was the order of the Galois group is bounded by the degree

of the field extension and this theorem is proved under the assumption that L over K is the

finite extension, finite field extension. 



I  think because this  side should make sense,  degree of L over  K should make sense,  so

therefore we need finite field extension. Alright, so and we define extension to be Galois

extension, L over K Galois extension if the equality holds and after that we have seen some

examples which also shows that and we analyse the simple extension will be Galois extension

that was what we have analysed and that is if and only if the minimal polynomial splits into

distinct simple linear factors in L, so that means all roots of the minimal polynomial of this

generating element should lie in L and they are different they are no repeated roots, so that

was what we have checked that, that is how simple extensions are Galois. 
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Now today I want to also little bit tells a more general comments about this philosophy that

for example to each object this is to each object we attach a group. For example to a set, set is

an object. See this object concept can be made more careful with the definition of categories

but we do not need in that generally, so I will just explain you buy examples. For example

sets are objects, so when one set, when one studies set theory we compare 2 sets. Also we

study the maps between them, we study different kinds of special maps between them namely

injective maps, surjective maps, bijective maps and so on, so to each set we have attached a

group called a symmetric group of S (X ) . 

They are precisely bijective maps from H to X. Now instead of set if I had a group G I would

attach not only all bijective maps but special  kind of bijective maps namely the bijective

maps which preserve the group structure that means bijective maps which respect the group

structure, so those are precisely called automorphism of G and then a group, so I will not



write that suffix here it is understood that when I write Aut G mean G is the object this is a

group, these are precisely group automorphism and that is clearly a group, it is a subgroup of

S (G) . 

Similarly if I had more, if I had say monoid, before that I should have said if M is monoid

then Aut M, it is automorphism of monoid here little bit we have to be careful that we need to

assume that monoid morphism map identity to identity that is not a consequence in general

unlike groups. Similarly if you have a ring, R ring then we have Aut R, to be very clear one

usually writes here rings similarly we will write groups and so on. So more generally if you

have a module over ring R, R-module then we have automorphism is of that module M as a

R, so R linear maps which are bijective, so this is also a group. So if you have a vector space

K, this is a particular case of the above examples if K is the vector space then we have Aut…

vector space V then Aut V over K this automorphism, so each object we have, we have a

automorphism group of that object. 
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For example the one we are interested in the field extension L over K field extension then we

have this automorphism as a K algebra this is precisely the group we want to study more

carefully. We could have also done if we have a field L then Aut L just automorphism of the

field  and  philosophy  is  from  the  knowledge  of  the  automorphism  groups  you  get  the

knowledge of the object and conversely, so this interplay is very important in mathematics

and it does not stop here you can go on, you topological space homeomorphism, differential



manifolds, differentiable maps and so on I will not go much into that what I want to say that,

the 2 definition I want to make, when do you call an object symmetric? 

Object is called symmetric if the automorphism group of that object, let us call that object to

be X automorphism group of this  object X, this should be maximum possible,  maximum

possible this is little bit vague but I will make with examples more clear and element of these

automorphism group are  called  symmetry  of  that  objects.  Elements  of  Aut  X are  called

symmetries  of X For example what  we proved that  the cardinality  of this  automorphism

group of the field extension can at most be the degree of the field extension. So these are the

Symmetric of the field extension and when will it be maximum, when the equality holds here

and that is  precisely what are called Galois extension,  so Galois extensions are the most

symmetric field extensions with this definition. So similarly other objects, so these are the

symmetric objects and opposite of that is what are called rigid objects.
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So objects are called object X is called rigid if the automorphism group is a trivial group just

identity of X, identity of X is clearly an automorphism, so automorphism group is a trivial

one that is then the object is called rigid that means there are no symmetries of X other than

the  identities.  Now one can  ask  various  questions,  can  one  characterise  rigid  sets,  rigid

groups, rigid rings, rigid automorphism rigid field extension and so on or rigid fields or you

can also keep asking ordered sets, ordered sets are also objects and Symmetric of the order

sets are precisely the order preserving maps which are bijective. 



So  all  these  questions  will  come  up  how  do  you  say  that  the  objects  are  symmetric,

characterisation of orders objects which are symmetric and which are rigid. These are of very

prime importance in studying in any subject and in this course we are only studying field

extension which are symmetric and they are Galois extension and how do we characterise

them and so on, so we are studying Galois extension and that is why this is called Galois

theory. 

So for example I want to remind, example last time we have said is automorphism of ℝ  as

a field Aut ℝ  this is a trivial group this needs a proof, so I will just here check. This is…

Therefore  ℝ  is  a  rigid field,  ℝ  is  a  rigid  field  because the  only automorphism is

identity. More examples of rigid fields are for example if you take the prime fields, prime

fields are precisely ℤp  where p varies in prime numbers and ℚ  these are rigid fields,

these are for each characteristics there is exactly one prime field that means if K is a field of

characteristics P then it contains  ℤp  and if K is a characteristics of 0 then it contains

definitely field ℚ . 
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And therefore with this also we know because we are considering if K is any field and if I

just take Aut K automorphism of the field K that is same thing automorphism of the field K

or  the  prime  field,  so  let  us  call  so  if  K  has  characteristics  p  then  it  is  a  ℤp ,  if

characteristics K is p positive, if it is 0 this is Aut K ℚ  algebra I should say ℚ  algebra

because  they  are  automatically…  If  characteristics  is  p  every  automorphism  will

automatically be ℤp  linear because ℤp  is generated, identity group generated by one,



so once  you know one goes  to  one then you know where  the  sum goes  and so on and

everybody know all the elements are going to themselves so they have ℤp  linear similarly

for ℚ . 

So automorphism of a field if I just take Aut K is field that is same thing as Aut_K ℤp

algebra or Aut K  ℤq  algebra depending on K is characteristic 0 or p. Alright, so also

remember I will raise this question now but the answer we will answer later, so for example if

I want to know what is Aut ℂ ? Aut ℂ  is therefore Aut ℂ  as ℚ  algebra, this is

same as Aut  ℂ  by the above remark and I have explained you what is the Aut  ℂ  as

ℝ  algebra homomorphism, so that  means the  ℝ  linear  so and these is  precisely 2

elements one is identity map of ℂ  and the other is σ  which is a complex conjugation. 

This is complex conjugation, this is what we proved last time and this is clearly contained

here because  ℝ  linear will imply  ℚ  linear but I want to stress here that this is not

equal, in fact this has cardinality to this group is very big group and this is even uncountable

cardinality this is a big group and to write the elements explicitly will not be possible unless

you have 2 take methods from transfinite site et cetera et cetera which with the help of what

is called a transcendent basis of a field extension with that helped we can describe this group

but right now we do not have those machinery to describe this group. 
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Alright,  so we continue our examples,  a few more examples  of non-Galois extension,  so

examples, so far remember we have  ℂ  over  ℝ  is a Galois extension. Also we have

checked that finite field, finite extension of a finite field is always Galois extension and in



this case the Galois group is cyclic and it is generated by the Frobenius map. I just want to

recall we have proved that if I have us simple extension L simple means in generated by one

element an algebraic extension, so whether I write round bracket or square bracket it is same

over  K  finite  extension,  finite  field  extension  and  then  we  have  analysed  then  for  this

generator of L as K algebra this X we have the minimal polynomial, this minimal polynomial

is a monic polynomial with coefficients in K and μx (x)  is 0, it is irreducible polynomial

because mod ideal generated by that is precisely this with L therefore it is a non-zero prime

ideal and therefore irreducible. 

So we have proved that L over K is Galois if and only if  μx  splits  into simple linear

factors in L[X ] , so that in other words in the notation if I take 0 set of μx  in L this is 0

set of μx  in L this as cardinality equal to degree of… That means all this has 2 conditions

that means all roots are in L and all are simple, right. So I want to give examples so that if

you if any condition fails there are 2 conditions here namely the roots are simple and all roots

lie in L. If anyone of these 2 conditions fails then the field extension is not Galois. I want to

see these examples exquisitely. 
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So 1st example let us take now rational number a, a is a rational number, nonzero and also

take any natural  number n odd and now I look at  the polynomial  Xn−a ,  so this  is a

polynomial of odd degree, so odd degree polynomial and which has a rational coefficients

therefore  it  has real  coefficients  and therefore we know from our college  study that  this

polynomial definitely has one real root, so let small x be  ℝ  such that, it is a 0 of this



polynomial means small Xn  equal to a and I want to choose now a carefully so that this x

is not in ℚ  and how do I make sure that that will mean that this rational number. 

So this is equivalent to saying the rational number, the prime decomposition of its rational

number  a  does  not  have  all  the  p  exponents  for  the  primes  occurring  in  the  prime

decomposition of a they cannot be all divisible by n, so simply in the notation is equivalent to

saying there exist prime number p with v p  of a is n does not divide this and what is v p

of a this is a p-th exponent occurring in the prime decomposition of a, this the p-th exponent

occurring in the prime decomposition of a. It can be negative integer. 

So you will see that why I put this condition but now the situation is I am considering a field

extension now, ℚ  is containing ℚ[ x]  remember whether it is round bracket or square

bracket it is the same because it is finite field extension x is algebraic, this is x is algebraic

over ℚ , so I will not repeat again and again few times it is good to repeat, so I have a field

extension and note that because I have chosen X as a real number this  ℚ[X ]  is already

containing the field R, alright now I want check that whether this ℚ[X ]  over ℚ  this is

a simple extension I want to check this is Galois or not and our observation shows that if I

want  to  check  this  I  should  check  that  all  zeros  of  the  minimal  polynomial  should  lie

completely inside this field that is 1st condition and not only that it should lie here but they

should be all distinct they should not be any repeated 0. 
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Okay, so but let us see how many 0 lie in therefore we are interested in the number of 0 in

ℚ[X ]  of this polynomial μx  and what is the minimal polynomial of μx  whatever it



is μx  is the minimal polynomial and because μx  is the smallest degree polynomial that

x satisfies over ℚ  and 1 polynomial definitely I know this, so this polynomial x is a root

of  this  polynomial  so  therefore  this  should  divide  this  where  in  the  polynomial  being

ℚ[X ] , so therefore whatever the 0 of  μ  is that will also be 0 of  Xn−a , so that

shows that this 0 set is contained in therefore V ℚ(X )(X
n
−a) . 

So I should know what are the zeros of  Xn−a  but well this 0 set is also contained in

V ℂ(X
n
−a)  and this 0 set  are precisely… I am going to write  down this  0 set  this  is

precisely x is obviously one of them and then ζ x ,ζ2 x ,... ,ζn−1 x , what is ζ ? So let me

remind you we have also discussed that if I take the polynomial  Xn−1  the roots of this

polynomial in complex numbers, this is precisely the roots of unity and we have checked that

this is finite subgroup of ℂ
x  and therefore it is cyclic and therefore it has a generator and

that  generator  is  called  primitive  n-th root,  n-th  primitive  root,  root  of  unity  and that  is

therefore this  group is…this 0 set  is  nothing but  ζ  and so on to  ζ
n−1 ,  precisely n

because this  polynomial  Xn−a  has simple roots because when you differentiate  it  the

roots are not so. 

Therefore this 0 set is precisely containing this set and on the other hand we know these are

all  real  and  they  are  all  containing  ℚ[X ]  and  ℚ[X ]  is  containing  real  numbers

therefore  we are  interested  only  in  the  real  zeros  but  only  real  0  among  them is  X,  so

therefore that proves that this set is only singleton x, so therefore minimal polynomial not

split into the linear factors in ℚ[X ]  unless μx  is x only but that cannot happen because

x is a real number this does not have the condition why did I put that n does not divide v p

of a because I wanted a non-rational real root. 

So therefore our degree μx  is definitely more than one and this one is cardinality of the 0

set  of this  minimal  polynomial  of  μx  in  K [X ]  therefore  the condition,  one of  the

condition is not satisfied therefore as a conclusion we conclude at ℚ[X ]  over ℚ  is not

Galois is not Galois extension and in the later half I will give another example where actually

the minimal polynomial has all the roots lie in the field but there some of them could be

repeated root therefore the extension cannot be Galois, so this example we will give it in the

later half. Thank you. 


