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Galois Extension

Recall that in the last lecture, we have proved that, when we have a finite field extension,

then the Galois group, the order of the Galois group is less equal to the degree of the field

extension and this allows us to define a particular type of field extensions, what are so called

a Galois extensions.
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So let me define properly, so definition. A finite field extension L over K is called a Galois

extension, if the equality holds, the equality order of the Galois group equal to the degree of

the field extension, such extensions are called Galois extensions, so first of all we have at

least  few examples,  we know that,  so obviously the trivial  extension K over K is Galois

extension, because the degree is one and the Galois group is trivial, so it is obviously Galois

extension.

We have also seen that ℂ  over ℝ  is a Galois extension, because in this case, the group

has two elements and the degree is also 2. If I have a finite field extension of finite fields is

also Galois and in this case also we have immediate consequences the Galois group is cyclic,

both the cases in example 1 as well as 2.



So now the next is I am going to analyse when can a simple extension be Galois, so let us

recall what a simple extension means? And what? 
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So first of all recalled that a finite field, in general a field extension L over K is simple, if

L=K (x ) , for some x∈L , so remember our notation L is a field here. It contains K and

x is an element in L, then we take the smallest, this is a notation for the smallest K algebra

that contains x, smallest K sub-algebra of L containing that element x and then we have seen,

then  all  elements  of  this  sub  algebra  are  precisely  the  polynomials  in  that  x,  now  the

polynomial may not have unique coefficients because it is only a an element, it is not an, it

may not be an indeterminate.

So, but now, strictly speaking we should consider K around bracket x, this is the quotient

field of this and then, this also contained in L because this is a field and it is a smallest field

that  it  contain  this  algebra,  but  L  is  one  such,  so  this  is  a quotient  field  therefore  it  is

contained here.

So simple extension means around bracket here, but why did I write a square bracket because

we are assuming that the extension is, if you assume L over K is finite, then  K (x)  is

already a field and therefore it is equal to K round bracket x, this we have seen last time,

because  it  is  a  finite  extension,  more  generally  actually  algebraic  enough,  if  I  have  an

algebraic extension, then whether I have it square bracket or round bracket it is a same thing,

this  we have proved in earlier  when we discussed about element wise characterisation of

algebraic  elements,  so  in  general  we  are  assuming  a  field  extension  is  algebraic,  so  an



algebraic  field extension is  called  simple,  if  L is  as a algebra over  K, generated  by one

element at is a cyclic algebra and this x is called a generated of that algebra.
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So x is also called a primitive element of this K (x)  over K remember there may be more

than one primitive element that we will see, primitive element are not necessary unique is

exactly like a group, a group is called cyclic, if there is a generator and a generator of a group

may not be unique as you know from several examples.

So simple extension is an algebraic extension, right now I am assuming only algebraic and

algebraic extension is a simple, if it is, it has a primitive element and now I want to analyse in

this example, when can such extension be Galois, so question is we are going to analyse this

question, so let me write an example, in this example we are analysing, when can a simple

algebraic extension K (x)  over K be Galois?

This is what I want to answer. Okay, now this x is an algebraic element in this, so therefore

remember  our  substitution  homomorphism  for  the  polynomial  algebra  to  this,  this  is  a

substitution homomorphism any polynomial F going to  F(x )  and we are looking at the

kernel of this is definitely nonzero, because since x is algebraic over K, so there is at least one

nonzero polynomial in the kernel. 

So therefore kernel ideal is a nonzero ideal and we know this is an ideal, ideal in the PID

K [X ] , which is a PID and therefore generated by a single polynomial and if you choose a



monic  generator,  that  monic  generator  is  unique  and  that  is  called  the  minimal  monic

polynomial of X over K.

So this is generated by μx , where μx  is a polynomial over K monic and it is monic with

μx (x)  is zero a minimal polynomial, minimal monic polynomial.
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So I  write  once more  μx  is  the minimal,  the because it  is  unique the minimal  monic

polynomial of X over K and we know from the above that, this 
K [X ]
μ x

, this module kernel,

this is isomorphic to the image, image is everything here because a this map is  surjective, so

we have this isomorphism, and because this is a field therefore μx  is a prime polynomial

in K [X ] , it is a maximal ideal, its generates a prime ideal, it generates a nonzero prime

ideal μx  is a nonzero prime ideal in K [X ]  and hence maximal also.

So the divisional algorithm will tell, this is a field and I am going to write down a basis of

these,  this  is  our  field,  this  is  our  L,  so obviously  we have  seen earlier  also,  obviously

1, X ,... , Xn−1 , where n is the degree of μ  is a K basis of this field K [X ]  over K.
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 So this in particular shows that, we can compute the degree of the field extension, so this

shows that degree, field extension, degree of the extension equal to degree of the minimal

monic  polynomial  of  x,  now  we  want  to  compute  the  Galois  group.  Now  take  any

automorphism, I want to compute, so we want to know now, how do we get automorphism?

And then you want to count also and we want to see how many in which case, they will be

equal to the degree μx .

So this is very important observation which will use again and again and this observation is

general, in this observation I need not assume that it is a simple extension, so I want to write

this observation, a general observation, which is used very often in Galois theory, so L over

K be an algebraic  extension and let  us take and element  x∈L  and a polynomial  F in

K [X ] .

Then if I take any automorphism such that polynomial F, such that, so I want to assume also,

polynomial F such that, if F(x )  is zero, so this one also one writes x belong to V L (F) ,

remember our notation V L (F)  is the set of all zeros of F inside the field L, this x may not

be in K, so take such a thing.

Then and let us take σ , than for every σ  an element in the Galois group of L over K,

so Galois group of L over, σ  belonging to that means σ  is a K algebra homomorphism

from L to L, K algebra homomorphism, so for every this  σ( x)  is also zero of F, this is

what I want to prove, so what should I prove, I should prove that, if I take F any valuated

σ( x)  it should be zero.
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So I want to prove that, so to prove that, I will write, to prove that, F(σ(x ))  is zero, then

it  will  be a  zero  of  F∈L  also,  so remember  F(x )  is  zero  given to  us,  so F is  a

polynomial like this, only once I have to write this and this is again and again use, so it is a

polynomial like this an X
n , then what is F(x ) , F(x )  is given to be zero, that means

I have to put small, capital x equals to small x so such a combination is zero in L, now I apply

σ  to this equation.

So σ  of zero, which is zero obviously, because σ  is a group homomorphism from the

identity groups, so this is  σ(F (x ))  but then, this is  σ  of this sum, but the sum, the

σ  respects  sum and  σ  respect  the  scalar  multiplication  and  σ  also  respect  the

multiplication, so therefore when I want to apply  σ  to this, I will apply separately plus

and σ  of a not is a not because σ  is K linear on the elements of K it is same.

The next one is  σ  of this a x, but the  a1 x , but  a1  will come out because it is K

linear, so this is σ( x) , a1  I will take it out, a1 σ(x )  and so on and the last term will

be  an  will  come  out  and  σ( x)  I  will  repeatedly  take  out,  so  this  is  nothing  but

σ( xm) ,  that  is  because  it  is  respect  the  multiplication,  so  we  have  used  repeatedly

σ( x2
)  equal to σ( x)2 , this is why we have used again and again.

So therefore on the other side is this, so this is zero, but this is nothing but F evaluated at

σ( x) , so therefore we have proved that, F(σ(x ))  is zero, that means you have proved

that whenever x is then V L (F) , then we have proved that σ( x)  is also in V L (F) .
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So these simply means, now let me get back to the, that means, see here you have L over K

was the field extension algebraic and I have an element of x here and I had this L and we

have this Galois group of L over K and we have noted that these group operates on L in a

natural way, and but I have a smaller subset here now, V L (F) , F is a any polynomial, F is

a polynomial in  K [X ]  I have this zero set of F in, so these are all elements in  x∈L

such  that  F(x )  is  zero,  remember,  it  may  not  have  all  the  zeros  inside  L  given  a

polynomial F, it may not have all the zeros there unless that L where L contains all the zeros

of F, but anyway does not matter

This set,  this is a subset of L and we have checked that these group actually,  this group

operates on this, on the zero set of polynomial and this operation is nothing but a restriction

of this operation is the same operation as it operates on L, the same operation  V L (F) ,

Galois group of L over K x  this to V L (F) , the map is the same map, evaluation maps,

(σ , y )  goes to σ( y) , we have checked that this is indeed an element here.

So this is, and this is a finite set L may not be finite, but this is a finite set and if you assume

you  are  field  extension  is  finite,  then  we  also  know  this  is  a  finite  set,  so  therefore

comminatory argument will help us to decide many things about field extension as well as the

Galois group, so that is a trick, 
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Now resuming back to our simple case. Now, assume you are L is a simple extension and X

is a primitive element, then we have seen an x is algebraic over K, then we have noted that

this degree is nothing but the degree of the minimal polynomial of x over K, μx  is monic

polynomial in K [X ] , minimal monic, this we have just noted x over K and now you want

to decide, what is the Galois group? And when can equality happens? This and when can the

order be equal to exactly this, this is what I want to do.

So look at  μx ,  this  is  a polynomial  in  K [X ]  and x is  zero of mu, because it  is  a

minimal polynomial of x, so I want to apply the general observation that we noted about, that

this if  σ  is in element of the Galois group, then and if I apply any, so then we look at

σ( x) , that means is K algebra automorphism from K (x)  to K (x) , this is σ  K

algebra automorphism, so x here then it goes to σ( x) , but we have noted it if this x is a

zero of some polynomial, then this σ( x)  is a zero of the same polynomial.
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So therefore by the observation  μx  of  σ( x)  is also zero, so that means  σ( x)  is

another  group, so that  means that this,  the zero set  of  μx ,  L and it  should be also in

element in L, so if this is equal to say one, zero we know that is x, let us call x equal to x1

and let us call all other zeros to be x1 , ... , xr  and we definitely know they are zeros of μ

, therefore the number of zeros will not exceed the degree of  μ , because we are over a

polynomial over a field, so therefore what we noted that, σ  will be uniquely determined

by the zeros because once we know the zero.

So note that σ  is uniquely determined by any zero of what I mean is. Okay, zero, uniquely

determined by any zero of μx , because if I know σ  is uniquely determined by I should

say σ( xi) , where x i  is any zero of μ . What does that mean? That means if I know,

for example if I know value of σ( x) , then I know all σ , because our field is K [ x]

but that is also same as  K [ x1] , because both of them the same minimal polynomial, so

therefore these fields are equal, so therefore all that together, altogether what we have done

is.
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So I will write a result that, therefore, σ  one is the identity σ  two means the one which

map x to x, σ  three the one which map x to x3  and σr  is the one x which maps to

xr , these are all automorphisms because x has to go to some route, where it can go, it can

go to x2 , it can go to x3  and so on and I know do not need this equality also, because

all that I need is this, these are uniquely determined by their values on x only because is

simply because L is  K [ x]  because this L equal to  K [ x] , if I know the value of any

automorphism on x then, I know whole automorphism because this algebra L is generated by

x.

So therefore what we have proved is the Galois group of K [ x]  over K is precisely σ

one which is identity because in this case x goes to x, then σ2 , and so on σr , as many

as the number of zeros of the minimal polynomial of inside the field K [ x] , so therefore

when can the equality, so when, so therefore the order of the Galois group K [ x]  over K

equal to this which is the degree μ , this equality happens if and only if the cardinality of

the zero set of μx  in L is precisely degree of μ , that means it has all the zeros are inside

L and all are distinct, so all our simple zeros.
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So this is equivalent to saying I will note it and then, so this is if and only if all zeros of μx

is are contained in L and they are all simple, no repeated zero, then only the equality can

happen. Okay, now this are two concepts, so this means, so I will then, this is, if and only if

that means  μx  splits into linear factors in  L[x ] , that is a meaning that all zeros lies

inside L, that is a meaning of this, that is this part and they are all simple, that simply means,

so that is μx  and the derivative μx  they do not have any gcd, because if there is a gcd

that will be the factor of μ  and therefore it will have a zero in L and μx  also will have a

zero in L, so there will be common zero and that will not be simple zero, so this condition is

also  called,  they  are  all  simple,  this  condition  can  be  restated  as  μx  is  a  separable

polynomial in K [ x] , that is a definition of separability.

So we will continue in the, so we a know now when the simple extension is Galois, you only

have to take the minimal polynomial and test whether all the zeros are inside that field and

whether all the zeros are simple and simplicity is tested without finding zeros because you

just have to find that whether the derivative and these original polynomial have common zero

or not. Okay, thank you we will continue.


