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Lecture No. 24
Automorphism groups of a Field Extension

In the last lecture, we have seen a group actions and some easy examples, today I will start

with a field extension and then so called the Galois group of that and this will be the central

theme in our course, so let us set up some notations.
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So I will usually denote L over K field extension, to each such field extension I will associate

a group, what that group will be called a Galois group. 



(Refer Slide Time: 1:27) 

So when you will a field extension that means K is a field of L that means the bigger field L

you can think a vector space over K, so this L is a K vector space, not only K vectors space it

is because it has it is own multiplication as a ring, so this actually K algebra, these we saw in

earlier lectures it has a structure of K algebra and usually when one says algebra then there is

a structure homomorphism, in this case the structure of homomorphism in this inclusion in

map.

This naturally inclusion with structure of homomorphism the natural inclusion K to L, this

gives an algebra structure of K algebra structure of on L, on the field L, so therefore it makes

sense should talk about K algebra endomorphism for examples, endomorphism from L to L,

that means when one says K algebra endomorphism means let us spell out what it means for

sure it is a map from L to L, it is a K linear map and also it is a ring of homomorphism, that

means it is preserves the multiplication, that means it respect the multiplication and obviously

we  have  made  our  convention  earlier  that  under  ring  of  homomorphism,  multiplicative

identity goes to multiplicative identity, so that is still we are assuming that and the set of all

endomorphisms of the field L. 
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 Of the K algebra L that I will denote End K algebra L, so this is just to remember that this is

K algebra endomorphisms of L, L to L and K algebra that means it is K linear, that means it

is a vector space endomorphism and in addition to that it is a ring of homomorphism, so if I

write some from these sum notations will be obvious from EndK L , this is just K linear one,

these are just a vector space K linear endomorphisms of L to L only the vector space that

means it is a K linear and it respects the addition, so therefore this is a subset of these, it may

be a proper subset.

And when I say Automorphism, AutK−algebraL , this means they are not only endomorphism,

but there bijective and inverses are also K algebra endomorphism, so this is precisely all

those σ  from endomorphisms such that σ
− 1

 is also endomorphism, the σ  is bijective and

σ
− 1

 also is an K algebra endomorphism of L.

So this is a subset of these and more importantly, this is actually a group under composition,

it  is  a  group  under  composition,  because  we  have  seen  if  you  have  two  algebra

homomorphisms  they  are  composition  is  also  algebra  homomorphism,  already  inverses

algebra homomorphisms, so under composition, it becomes a group and let me also remind

you this is, if I write only AutK L , this should mean only a vectors space automorphisms.

So this is also subset here and it maybe a proper, this also may be proper and etc. So we are

concentrating on these group, these group also I will keep denoting Gal(L∣K ) , this is called



a Gal(L∣K ) , note that these group I have defined for arbitrary field extinction and the I still

use a word Galois group because Galois is the first who started with such studying such a

group, of course Galois started studying such a group in a very particular situation, but the

name continues to be for arbitrary field extension, so couple of remarks about this group.
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So first of all note that this  AutK−algebraL  this is, if I take all bijective maps from L to L,

S(L) , this is the notation I keep using last time also use, this is the set of all bijective maps

from L to L, σ  from L to L bijective, σ  is bijective, this is called a symmetric group on the

symbols L the symmetric group of L, so this is actually a subgroup of these, because we

know that the multiplication binary operation of these group is a composition, and the same

is, this is a group, this is a big symmetric group, this is a very big group but this is some

elements among them, this is the Galois group.

And we are going to study, we are going to do the following this field extension and a group

that is AutK−algebraL , this is Gal, I should start using the notation Gal(L∣K ) . Because the

more you use the more you will get acquainted with, so this association from field, field

extensions  to  groups,  we are going to interplay  between this,  so we are going to extract

information  about  field  extension  from  this  group  and  also  conversely  from  this  group

information about the field extension and from field extension about this group both ways not

just  one  way  traffic  both  ways,  so  that  is  what,  therefore  we  have  to  understand  these

association more and more ultimately that is what we will do it. 



For example, if this group finite, if L over K is finite, if this group finite, if it is, what is the?

What can be the order? And so on such questions, so in the beginning I will try to extract

information only from the numeric invariants. 
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For example, to a field extension we have because L is a K vector space, so we have this

number dimension of L over K, this is the cardinality of a basis of L over K, this is also

denoted by L over K and this is also called a degree of the field extension, degree of L over

K. And also we have group, so we have the order of that group, so the first question is what is

relation? And some kind of relations, so this is what first I am going to do that, this is the

most important fact in this course will be the following, namely, this automorphism group,
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So Gal(L∣K ) . The elements I will denote σ ,  τ  etc. elements are denoted by σ ,  τ ,  ρ

etc. they are automorphism of the field extension L over K, this group operates, last time we

saw group operation . This group operates on L in a very natural way, in a natural way, what

is  a  natural  way  it  is?  It  is  so  natural  that  very  easy  to  write,  so  I  want  a  map  from

Gal(L∣K )×L→L , this is my set X, the set X and this is a group and when I, when we know

that  the  group operates  means  there  is  a  map  from  G× L→ L ,  which  satisfy  those  two

properties. 

So what is a map? Take any σ  and take any x element in L and when can I map it? How do I

get another element in L that is σ  of X, because σ  is what? σ  is an automorphism of L, K

algebra automorphism, this is a K algebra automorphism, so  σ  operates on this, now the

whole Galois Theory will centre around studying this operation. What does that mean? That

means studying the orbits, studying the stabilisers and studying fixed points and so on, so the

as we progress in this lectures, I am going to make the vocabulary of group actions more and

more intimater and with supplement it by more and more examples.
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So before I, we go on to the numerical invariants, so some examples. I should write in this

view now, so first  of all,  if  I look at  the extension,  the easy one,  ℂ  over  ℝ ,  this  will

extension also first of all what is the degree? Dimensional of ℂ  over ℝ  is to, in fact 1 and I

is a basis, this is ℝ  basis and definitely I know, so therefore the degree, this is the degree,

this is ℂ  over ℝ , this degree is 2 cardinality of a basis and was is the Galois group of ℂ



over  ℝ ,  this  has  definitely  two elements  I  know, one is,  definitely  identity  is  always a

algebra homomorphism, identity  of  ℂ  and then other  ℝ  algebra homomorphism is, we

want the  ℝ  linear map of  ℂ  which also should preserve the multiplications which also

respect the multiplications.

And obviously the σ  which is a complex conjugation that is the map from ℂ  to ℂ  which

maps z to z , this is obviously ℝ  linear,  ℝ  linear is obvious because z is real number if

and only if  z  is z, so  ℝ  is linear is obvious and also it respects the multiplication that

means all that we need to check is  zw  then the bar of that is same thing that  z w , this

precisely means this two together means and obviously one goes to one, this means that σ  is

indeed an ℝ  algebra automorphism of ℂ .

So this, this group definitely has two elements, identity and σ  and soon I am going to prove

that, this is the, these are the only two elements, so therefore in this case Galois group is of

order two and as we know the studying groups of order two is very simple, therefore studying

this  extension  will  also  be  simple  that  we  also  know,  we  have  been  studying  complex

numbers or real numbers very neatly, so this is one example.
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So another example is, suppose I take a finite field K, field with q elements, K is a field with

q elements, so we have seen that q has to be the power of p,  pm , for some p, for some

prime number p, p and some non-negative integer m, so therefore this is a vectors space over

ℤp ,  K p  is  ℤp  in  our  notation,  this  is  ℤp ,  so  this  extension,  this  is  a  field

extension and we know what is the dimension? The dimension of Kq  over Kp is nothing

but m, this power m, that we have done in the last lecture.

So this is a finite field extension of degree m, now when should give some elements in the

Galois group, so I want to give some elements which are automorphisms of Kq  as K p

linear right, so I am looking for a maps which are  ℤp  algebra homomorphism, which

should preserve the multiplication, which should respect multiplication, which should respect

addition and also the scalar multiplication.

Okay, but obviously in this case not much to check, so will give you the map directly, so let

us take the map x going to xq , what is this map? We have seen that if I take raise it to the

power q, I get back x, because we know this Kq
x , this group is cyclic and order is q−1

therefore when I raise arbitrary element to the power q, q−1 , I get identity, so when I take

one more then you will get x, so this is just a identity map, but instead of this, if I would have

taken x goes to x p , let us check whether it is a algebra homomorphism.

So what do we need to check first of all, it is K linear, so this is K algebra homomorphism,

that is very clear because of this, (x+ y)p  is same thing as x p+ y p , that is because p is a



characteristic of  Kq , characteristic of this field is p, therefore when I raise at respect to

addition multiplication is no problem and linear it is also no problem. So, it is a actually

ℤ  algebra homomorphism and it is automorphism because it is injected, it is a map from a

field  to  somewhere,  but  a  map  from a  field  is  always  injective  because  it  is  a  ring  of

homomorphism also.

So carnol cannot, carnol has to be either zero or whole, it cannot be whole because one goes

to one, therefore any endomorphism, any map from any algebra homomorphism from a field

is  always injective,  so it  is  a  injective  and it  is  also bijective  because  of  the cardinality

argument because it is a finite set injective map, Pigeonhole principal will say this map is

bijective, so we have this, this map is very very important, this map is called a Frobenius. The

Frobenius was the first to consider this map, so I will keep this map as f p . 
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 So this is, I will go to the next page, so this map, so fp this is a map from, instead of q I will

write p power m, because then it  is more visible,  so  K pm  to  K pm ,  this  is obviously

element in the, this is ℤp  algebra homomorphism, algebra automorphism that is what we

have check this is called Frobenius automorphism. 

Okay,  once  you  have  one  automorphism,  if  I  compose  with  itself  that  also  should  be

automorphism, so f compose f, f p  compose f p , let us see, what does this map is? This

should be denoted f p2 , this is what this map? Where will it send x? The first f we will send



it to x p , this is the first f p  and the next one again it will send to power p power of this,

so that is (x p)p , which is x p
2

.

And so we have definitely these Galois group, Gal(K pm∣K p) , this Galois group definitely

we found some elements, one is obviously the identity map of  K pm  to  K pm , then fp,

then f p2 , then I could take cube also, that will become the map x going to x p
3

 and I can

keep doing it to up to pm , but when I do pm , I will get back to identity map, so this one

I can definitely go on till f pm−1 .

Because f pm  is the map of x going to x p
m

, which is x, so therefore f pm  is nothing but

the identity map, so definitely I got m elements there and I will show you that this is, these

are the only elements, so we would have completed the Galois group and then we would have

compared with its the degree, in this case degree is m and this if I prove this equality, then the

cardinality of this set is also obviously m and therefore the degree will be equal to the order

of Galois group, alright, so that will be the I will give more and more example as we progress

with more and more vocabulary. Alright, so and studying this, see we are studying objects

with their automorphisms that means we are studying. 
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 For example, we could be studying groups G with automorphism group of G that is Aut G,

simply the notation will be this they are automorphism of G or before this you could have

done sets,  a set X with the automorphism of set  means the justice simply bijective map,

because there is no structure on the set other than the set, so that is all bijective maps of this,

so this is Aut X.

So, similarly you could have done it for ring R, then ring automorphism, so I should write

now Aut ring, so the notation also becomes clearer that we have to specify, what structure is a

ring  map?  We  want  to  study,  so  module  R  modules  just  say  Aut  R  then  module  M,

Aut RM ,  that means all  automorphisms of the modules means they are R linear maps,

there are module homomorphism and bijective module homomorphism, their automorphism,

or you can do R algebras. Generally, so that will be Aut R alg and R algebra is B, then it is

Aut algebra B.

So vectors space is a special case of this, so this is AutKV , right, so this is AutKV , if

R is K and then this M is V, then we write this, if this K is K algebra, then this is a field L

then that is our Galois group, so in all these are groups and we are studying this objects with

these groups, so now it is, how big are these groups? The bigger the groups the structurally

more complicated, a smaller the groups the structure will be crocked, because then you have

not many possibilities to have automorphism, so that is Aut.
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So I will prove the first connection, the numerical connection that this theorem, I will prove it

when I in the next half, so theorem we want to prove is the following, theorem, this is called

Dedekind  Artin,  so  L over  K finite  field  extension,  then  the  order  of  the  Galois  group,

cardinality of the Galois group is less equal to the degree of the field extension, so we know

that if we have a finite field extension, then the order is, order of these group cannot be more

than this, already this, this will tell you for R over ℂ , we have seen this is 2 and this is also

2, so equality should hold here and then the group cannot be more.

Similarly for finite field extension of finite fields, already, we have check that this group

contains so many elements, so equality should hold here, so this already proves that Galois

group ℂ  over ℝ  is only two elements, Identity and σ , the complex conjunction, similarly

Galois group of  K pm  over  K p  this is already identity  f p  and so on and  f pm−1 ,

because this cannot have more elements and once you check their distinct that is all.

And in particular, this group is cyclic, now wonder because it has only two element, but even

this group is cyclic, because it is generated by the Frobenius, so this is cyclic generated by

Frobenius map, Frobenius automorphism, so we will come back and prove this theorem and

for this theorem, we will use so-called dedicate other chronicus theorem, we will see, I will,

my plan is to keep prerequisite as minimal as possible. Okay, so we will continue in the next

half.


