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Lecture 22
Construction of Finite Fields 

We have seen that finite subgroups of the unit group of a field are cyclic and we want to

consider one important example where we will use these facts to describe what is called roots

of unity.
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So let me write this as an example roots of unity, so let K be any field and n be a positive

natural number, actually I want to call not K but L, L any field and n be any positive natural

number then look at the unit group of L and we have a natural map here namely the power

map n, x goes to xn , this is the power map, this map obviously is a group homomorphism,

so therefore it makes central talk about kernel let me call it χn , so kernel of χn  these is

a subgroup of  Lx  and these subgroup is precisely all those elements  x∈Lx  such that

xn  is identity, so these is also these are precisely the n-th roots of 1, so these is denoted by

μn(L)  it depends on n and it depends on field L, so these is a subgroup of Lx  and in

fact it is a finite subgroup in fact the cardinality of μn(L)  is at most n because μn(L)  is

precisely in our earlier notation if you remember μn(L)  is same as V L (X
n
−1)  they are

precisely the zeros of these polynomial, so it is. 

And  these  cardinality  less  equal  to  n,  so  cardinality  of  μn(L)  is  less  equal  to  n,  so

therefore it is a finite  subgroup of  Lx  so we know it is cyclic, so  μn(L)  is a cyclic

subgroup of Lx  so if let ζ  be a generator of μn(L)  then first of all note that ζ
n  is

1 that is by definition of  μn(L)  and order of therefore order of  ζ  will divide n and

these is order of ζ  is same as cardinality of μn(L)  so when the order is n if order of

ζ  is exactly n then ζ  is called a primitive root of unity, primitive n-th root of unity in

L, note that the primitive unity is defined only when the order is precisely n so it is in this

case when one talks about primitive n-th root that means μn(L)  has order n and ζ  is

the generator of μn(L) .
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So if the note if characteristic is p what happens if characteristic of the field is p which is

positive in the case you write is given n as take out as much power of p can come out pαn’

where p does not divide  n’  then  μn(L)  and  μn’ (L)  they are same because when

somebody  belongs  here  x  belongs  here  means  what  that  means  xn  is  equal  to  1  or

xn−1  is zero but these is equivalent to saying  x p
αn’

−1  is zero these is equivalent to

saying (xn
’

−1)
pα

 is zero and the zero is all are in L but L is a field so these is equivalent to

saying xn
’

−1  is zero in L, so that is equivalent to saying x is in μn’ (L) , so the groups

are not changing if you through away the if you cancel the power of the characteristic from n,

So therefore one may we may assume there for to study.
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So I will note it down very important reduction so to study the subgroup μn(L)  we may

assume that  p,  the  characteristic  of  L and n are  co-prime,  the gcd of  these  is  1  already

characteristic zero we do not have to assume anything, characteristic p we have to assume p

does not divide 1 but these can be neatly written as these is equivalent to saying n is not equal

to zero in L when you say n that means the n times 1 these is not zero in L that is where when

if the characteristic is positive if the characteristic is positive if the characteristic zero these is

always true so that is a very important reduction to study the roots of unity and (I will come)

we will come back to it when we construct field extensions whose the Galois group precisely

this group, ok alright.
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So now we want to I want to come back to a proof where the structure of the finite fields or

L, L be a finite field then first of all we note we last time also we noted that the cardinality of

L must be power of a prime numbers  pm  where p is prime and m is non zero natural

number, these is because we know that the characteristic of finite field must be a positive

characteristic L must be p positive and then L will contain a prime field ℤp  and because L

is finite dimension of L as a  ℤp  vector space it is positive m finite dimensional vector

space  so  therefore  these  L will  be  isomorphic  as  a  vector  space  to  ℤpm  in  particular

cardinality of L must be cardinality of ℤpm  which is ℤp  cardinality power m so which

is pm  so we proved that if you have a finite field the cardinality is nothing but power of a

prime number p. 
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Conversely  I  want  to  prove  that  if  I  have  any  finite  field  no  conversely  I  want  to  so

conversely given p given a prime number p and a positive natural number m we want to

construct a finite field L with cardinality pm , for m equal to 1 it is obviously the field we

can take is ℤp , ok. So proof so we have given p so that means we have given ℤp  and

then you look a we therefore can look at the polynomial  X p
m

−X  these is a polynomial

think of these is a polynomial over ℤp [X ] , alright.

Now,  I  want  to  used  Kronecker's  theorem,  Kronecker's  theorem  says  that  given  any

polynomial or any field I can find a bigger field so that all zeros of that field of the that

polynomial lies in that field, so by Kronecker's theorem there exists a field extension finite

field  extension  L’  of  ℤp  such  that  X p
m

−X  these  polynomial  splits  into  linear

factors in L’[X ]  and these is a finite field extension of these so in particular L’  is also

finite, alright. 



(Refer Slide Time: 13:37) 

So  L’  is also finite field and anyway I want to consider the all  the zeros of the these

polynomial, so zeros of these polynomial V (X p
m

−X )  in L’ , so these set I want to call

it L so they are the zeros of these polynomial and they are precisely ok will worry about how

many are there but right now we checked that these actually form a sub field so for that I

have to checked that so we will checked that L is a sub field so for these I have to checked it

is closed under addition and also multiplication and inverses of course, so that means if x is a

zero of these, y is a zero of these then x+ y  is also zero of these that is  what we have to

check (but) for that is very easy (x+ y)p
m

 these is because a characteristic is p, x p
m

+ y p
m

but x p
m

 is x and y p
m

 is y, so therefore this similarly this and also x inverse power pm

equal to x inverse, that is we don’t have to checked this because for these is when x is not

zero, so it is a subfield, alright.

Now if I want to claim that the cardinality of L is precisely pm  but to check that I have to

checked that these polynomial so to these is if and only if the polynomial  X p
m

−X  has

precisely  pm  distinct zeros, that means I have to checked that these polynomial all the

zeros are simple. 
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So to check this so it is enough to note that the polynomial X p
m

−X  has simple zeros that

means  no  repeated  zeros  and  how does  one  check  that  when  I  should  differentiate  and

checked whether that is a zero of these, so let x be a zero of these polynomial let us called

these polynomial as F and I want to check now to check that if I take F’  and evaluated

these small x this is not zero but what is F’  we have to differentiate these polynomial with

respect to X but p is a characteristic so these is  pm X p
m
−1

−1  but these is zero p is zero

therefore these is zero so these is −1 .

So therefore  F’ (x)=−1  it is constant, so an  −1  cannot be  −1  is not zero in L

therefore we have checked that these polynomial has only simple zeros and it has precisely

therefore pm  zeros so that checked that the zero set of these polynomial in arbitrary field

extension  where  these  polynomial  splits  has  precisely  n=pm  elements  and  that  is  a

required field.
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Now we auto prove the uniqueness, so uniqueness that means we want to prove that if I have

2 fields  of  the  cardinality  pm  then they  are isomorphic,  so suppose  so I  will  write  a

statement first the field L of cardinality pm  is uniquely determined up to isomorphism, ok

that means what that means if I have two fields L and L’  fields with the same cardinality

pm  then I want to find an isomorphism yes, alright.

So let us look at Lx  now L is a finite field so these is a finites of group of Lx  so these

groups is cyclic we have proved it, so let x in Lx  be a generator, ok now these L contains

ℤp  because characteristic is p, characteristic has to be p you know we have noted that if



the power is the cardinalities power of p then p has to be the characteristic so it will contain

the field ℤp  and because these L is a finite field these extension is a finite extension in

fact finite of degree m and in particular there for algebraic L is algebraic over ℤp , so in

particular these element x which is a generator of Lx  is algebraic of ℤp .

So let  μx  be a  μx  belonging to  ℤp [X ]  be the minimal monic polynomial of x or

ℤp  alright, so what is L so now therefore what do we know or the property of minimal

polynomial that is when I take ℤp [X ]  mode ideal generated by μx  these is isomorphic

to ℤp  adjoin x these is precisely remember the evaluation map the polynomials evaluating

at these small x the kernel is precisely generated by the minimal monic polynomial and the

image is precisely the subfield generated by x.

So these is a field and these is an isomorphism of fields, alright but these is what because x is

a generator these is precisely L, x is a generator of Lx  means every element of Lx  are

the powers of x and therefore in particular they are polynomials in x so these field is precisely

L  alright.  Now  we  know  that  these  polynomial  μx  is  1  and  the  look  at  the  other

polynomial X p
m

−X  these is the polynomial where x also satisfy because x is an element

in L so therefore μx  these polynomial is in the kernel therefore μx  has to divide μx

divides these polynomial in  ℤp [X ]  in  ℤp [X ]  because these is polynomial where x

satisfies and these is another polynomial where X this is minimal so therefore these has to

divide these here but when I these polynomial has all roots in L therefore when you threw

away X take a  common factor  X p
m
−1

−1  these  polynomial  is  precisely  the  product  of

X−a  where a varies in Lx  because when I threw away X we get these polynomial has

distinct roots when I threw away when X you get a polynomial of degree pm−1  and Lx

also has m elements so all linear factors will occur there because so these polynomial splits

like these in L[X ] , these splitting is in L[X ]  these.
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Now let us take the L’  was another field, L’  another field with pm  elements and we

have noted that these polynomial X p
m−1

−1  these splits into linear factors in L’[X ]  also

so therefore and μ  was the factor of these therefore we know there exists so in particular

there exists x’∈L  such that μx (x
’
)  is zero because μ  was a factor of these μ  was

a factor of X p
m

−X  therefore will be 1 and X is not zero so x’  will be a zero of these

μ  and then we have these map look at the map ℤp [X ]  to L’  the map is evaluation

map ϵx ’  so X capital X go to x’  then obviously these μ  goes to zero, so therefore we

will get so these will induce.
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These ϵx  induces ℤp [X ]  modulo ideal generated by μx  to L’  because μ  is in

the kernel of these max since μx  belong to kernel of ϵx  but now these is a field these

we know these is precisely ℤp [x ]  small x but these is precisely L so these is a field and

these goes inside these L’ , so these map these ϵx  these map bar these map is injective

because these is a field from a field it cannot have kernel field has no ideal other than zero

and itself so these may have be injective and also surjective because surjectivity will follow

from the fact that both L and L’  have the same cardinality so pigeonhole principle will tell

you in injective map same cardinality set has to have bijectivity.

So since  cardinality  of  L  equal  to  cardinality  of  L’  so  therefore  these  is  actually  an

isomorphism because it is bijective maps (so it is isomor) so that proves our claim that L and

L’  are isomorphic.

So remember that we have proved two very important observation today namely one was

every finite subgroup of group of units of a field is cyclic and we have used that track to

check that any two finite fields of the same cardinality are isomorphic and cardinality of a

finite field can only be power of a prime and any two such fields are isomorphic, so we have

also constructed them explicitly how to construct and the (constructor)  construction is by

using  the  polynomial  X p
m

−X  and  we  will  continue  in  the  next  lecture  some  more

consequences I want to deduce from this observations, thank you.


