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Lecture 21
Finite subgroups of the Unit Group of a Field

We will continue our study of Structure of finite groups of the multiplicative group of a field

and today we will prove that these subgroups are cyclic. 
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So (what)  we will  prove  is  that  if  K is  any field  and G is  a  subgroup of  K x,  K x is  a

multiplicative group of the field K and if G is finite then we want to prove G is cyclic, that

means we want to prove that G is generated by one element that is in our notation G is H ( y )

for some y, such a y may not be unique and such a y is also called a generator of G or also

called primitive element of G. So cyclic group has primitive element and there may not be

unique, there may be many primitive elements this what we want to prove but for the proof of

this we will need some preliminary results on finite groups that I will recall,  some of the

results I will  recall  with the sketch of proofs and some of the them I will recall  without

proofs.
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So for example let us started typical finite group for example we have seen  ℤm , this is

modulo m operations, congruence modulo m. So there two operations plus and dot And with

respective that we have seen it is a ring and whenever we have a ring we talk about the unit

group  of  the  ring  that  is  usually  denoted  in  this  case  ℤm
x  this  means  you  take  the

multiplicative monoid (ℤm, .)  And take units in multiples element in their monoid that is

obviously a unit that obviously subgroup of the multiplicative monoid of ℤm  this is called

group of units, group of units of ℤm  and for example when m is 0 hiss ℤm  is Z and

therefore ℤm
x  is Z cross which is only plus minus 1. 

So it is obviously cyclic of order two more generally if m is positive remember also when we

did the definition etcetera for ℤm ,  ℤm  as also same as Z additive group of integers a

modulo the subgroup generated by m that is this, so this are the cosets and there given by the

remainders of when you divide by m so there precisely m remainders from 0 to m minus 1, so

therefore elements of ℤm , ℤm  also we are denoting this as residues that or equivalence

classes so the notation is this, these are precisely the residues and there are precisely residues

are from 0 to  m−1 , so these are precisely equivalence classes of 0, 1, 2 up to  m−1

with the congruence modulo m relation, so when m is positive the units are precisely ℤm
x

these are precisely all those remainders and we can assume them they are from 0 to m minus

1 and gcd of a and m should be 1 they are co prime to m, they are precisely the units in

ℤm  and then how many of them are there that this is a very famous notation for that due to

Euler.
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That is say that cardinality of ℤm
x  is precisely ϕ(m)  where this ϕ  is Euler’s totient

function this is Euler’s totient function which maps any natural number m to  ϕ(m)  and

ϕ(m)  is by definition cardinality of all the integers, all the natural numbers a, 0⩽a<m

and gcd of a and m is 1; the number of coprime integers that is the ϕ(m) , so the first thing

to note is that because this is a group and order is ϕ(m)  dividing any element there any

element will look like any element is a residue and then if I raise to the power phi power m

that should be 1 in these in ℤm  but this is precisely writing this is equivalent to writing

that if I raise aϕ(m)  that is congruent to 1 mod m this is also called Euler’s theorem, so this

is under the assumption that gcd of a and m is 1, so this is Euler’s theorem. 
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(pa) Particular case we have seen earlier that is the famous Fermat’s little theorem that says m

is p here now any a smaller than p and bigger equal to 1 these are coprime to p does not

divide a so therefore  ap−1  is congruent to 1 mode p note that in this  case  ϕ( p)  is

p−1  because everybody is  coprime to p,  smaller  than p so that  is  the Fermat’s little

theorem, ok now.

Now  I  want  to  recall  what  is  called  Chinese  remainder  theorem  so  Chinese  remainder

theorem this is about the solutions of simultaneous congruences simultaneous solution of a

simultaneous congruences relations, so let  m1  to mr  be positive integers  ℕ
+ which



are pairwise relatively prime that simply means if I take any pair mi  and m j  they do not

have any common factors that is gcd is 1 for all  i≠ j  and let us take m is the product

m1  to  mr ,  then  for  every  tuple  of  integers  r  tuple  (a1 , ..., ar)  of  integers  the

simultaneous congruences X congruent to  a1  mod  m1 ,..., X congruent to  ar  mod

mr  have a solutions in Z. this simply means there exist in integers X so that X is congruent

to a1  mod m1 , X is congruent to a2  mod m2  and so on X is congruent to ar

mod mr , definitely there is a solution moreover a solution is uniquely determined modulo

m solution may not be unique but when you go mode m that is unique solution. So this in the

notation we can simply reformulate neatly as follows. 
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So reformulation  of  CRT Chinese  remainder  theorem the  canonical  ring  homomorphism

χ  which is homomorphism from  ℤm  to  ℤm1
×...×ℤmr

, this is a product ring the

component wise operations so any residue here a suffix m this maps to take that a and take

the residues mode  m1  etcetera mode  mr  this is a canonical map you just taking the

residues this is an a isomorphism of a ring and surjetivity is what the existence of solution

and the injectivity of this map is precisely uniqueness model, so this is also I will keep calling

as Chinese remainder theorem, so proof is not very difficult so proof I am not going to prove

this but I will note down some corollaries. 
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So for example, 1 corollary the canonical these canonical ring homomorphism χ  induces

an isomorphism of unit groups that means this chi bar was from ℤm , so the unit group of

so that notation is χ (x)  this is ℤm x
 to obviously the product ring the units are precisely

the units in each component that means these are the this is a unit group of that product ring

this  is  an isomorphism because  at  the  ring level  it  is  isomorphism so unit  level  it  is  an

isomorphism. 

So in particular the order of this group that we know it is phi m which is the order of the

group ℤm
x  but that is same as the order of this group ℤm1

x
×...×ℤmr

x  but these products is

obviously  the  product  of  the  unit  group  of  ℤm1
×...×ℤmr

 but  obviously  these  is

ϕ(m1) ...ϕ(mr)  so therefore this  means that  ϕ  is  multiplicative function that  means

whenever you have relatively prime integers and when you apply ϕ  to their product it is

the product of the ϕ s. 

So that was the (consequence) that is the property of the Euler’s ϕ  function. 
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So  further  if  I  specialized  if  I  take  precisely  if  I  take  m  equal  to  look  at  the  prime

decomposition of  m= p1
α1 ... pr

αr  where  p1  to  pr  are distinct  primes and  α1  to

αr  are positive natural numbers then ℤm
x  is precisely ℤp1

α
1

x
×...×ℤpr

α
r

x  therefore their

orders  are  equal  that  is  ϕ(m)  equal  to  modular  of  these  group  that  is  obviously

p1
α1−1

×( p1– 1) ... pr
αr−1

×( pr –1)  so nice formula for ϕ , also we can also formulate the

Chinese remainder theorem completely in group theoretic terms so let me do it, so group

theoretic formulations of CRT Chinese remainder theorem, so that is a following suppose you

have G1  to Gr  are finite groups and let us denote G to with a product group with the

component wise binary operation product group, ok then G is cyclic product group is cyclic



that means it has primitive element if and only if a each factor every factor G1  to Gr

are cyclic and there orders are coprime and G1  to order of  G1  to order of  Gr  are

pairwise relatively prime.
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So that this again I will not prove but this depends on this one can prove this I will just make

one comment this can proved easily (by using) by induction proof by induction by induction

on r and the observation following observation about the orders if g and h are two elements in

a group commuting elements of positive orders then order of the product equal to product of

the orders if and only if order g and order h are relatively prime this is this observation is very

simple very easy to prove, so I leave it for you to check and now with this I will prove the

theorem I wanted to prove.
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So that is the theorem every finite subgroup G of K x  where K is a field is cyclic, these

what we wanted to prove, ok. K may not be a finite field, K may be infinite field also for

example K=ℂ  or K=ℝ , so proof so let us look at the order of G, m is the order of G

which is I will write other prime decomposition p1
α1 ... pr

α r  where these p1  to pr  are

distinct primes and α1  to αr  positive natural numbers.

So I will call these p1
α1  as m1  and pr

αr  as mr , so m1 ...mr  are relatively prime

down pairwise m1  to mr  are pairwise relatively prime, so and now I define ni  to be

equal to  
m
mi

, m is the product and I am just this mean that I am omiting  mi  in the

product, so these are integers, these are natural numbers i is from 1 to r and it is obvious that

the gcd of n1  to nr  is 1, So that means I can write 1 is a combination of n1  to nr . 
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So write 1=b1n1+...+brnr , b1  to br  are integers and therefore if I take any x, so for

every  x  in  G  therefore  x=x1
=xb1n1+...+brnr  which  is  same  as  now  these  is  same  as

xb1n1 xb2n2... xbrnr  and these elements I want to call  x1,x2  and  xr , so therefore every

element we have written that is the product of r element  x1  to  xr  and what is what

about  x i
mi  these is  x i  is  xbini  and then raise it to the power  mi  but that is same

thing as xbinimi  is precisely m so these is xmbi  but this xm  element in group G whose

order is m therefore this xm  is identity, so this is also identity and I am denoting identity

by 1 because it is subgroup of K x  where 1 is identity, so this is true for every i from 1 to r

these is if you like these is equal to one by Lagrange’s theorem
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So therefore x i
mi  is 1 for all 1 to r that is what we have checked but then remember we are

over a field so now look at this polynomial, fix i from 1 to r and look at the polynomial

Xmi−1  these polynomial we know because its polynomial or a field it has at most  mi

zeros and I already know that each exercise is zero of these polynomial each x1  to xr  is

a zero of these polynomial it has at most mi  zeros and I know it has so many zeros if it has

less number of zeros I want to claim that it has exactly  mi  zeros because if it has less

number of zeros then G will have you see here we have proved that every element of G is a

product of x1  to xr , so if the number of zeros are of these polynomial is less than mi

than this meaning components are less, so by cardinality argument (it will) G will have less



number of element, so these polynomial has exactly  mi  zeros say otherwise would have

less number of zeros otherwise G has less than m element m is m1m2 ...mr  elements.

So therefore G has  these polynomial  exactly  has  mi  zeros also moreover  look at  this

polynomial  X
mi
pi−1 , these polynomial has at most 

mi
pi

 zeros, so therefore we can find

there exists an element y i  and G such that y i
mi  is 1 and y i

mi
pi  is not 1, that is because

you see these has to be the zero of these polynomial, so it is these and these has more zeros

than these, so therefore I can find an element y which is zero of these but not zero of these

that means y i  I can find so that y i
mi  is 1 and y i

mi
pi  is not 1, But then this means the

order of  y i  so that  is  there exists  y i∈G ,  i  from 1 to r  such that  order of  y i  is

precisely mi  because y i
mi  is 1 and y i

mi
pi  is not 1 therefore order has to be mi  and

these is to for every 1 to r and y i  is so therefore order of y1  to yr  these product as

earlier noted that is orders of products of the orders of y1  to order of yr  and these is

m1  to mr  which is m which is order of G therefore these elements has to be a generator

of a G.

So that is  y1 ... yr ,  y= y1 ... yr  is a generator for G, so G is cyclic,  this is what we

wanted to prove, So we have proved that all finites of groups of the multiplicative group of a

field is finite and we will used these fact in the next lecture to construct field arbitrary fields

of cardinality pn , so we will continue after the break. 


