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Lecture 20
Some Examples and Characteristic of a Ring

Now we are discussing finite groups I also like to have some examples of the groups which are

not finite but arguments etc so I would like to spend some time on explicit examples which are

very useful not only in algebra but even analysis courses. Couple of such groups before I actually

prove the theorem as stated I want to discuss some examples. 
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Alright so the examples that I want consider are for example the groups so let us let me write the

groups these are groups Rx  of course this is a group under multiplication but not only this, if I

take the positive ones. So this are precisely the positive real numbers a real numbers in non-zero,

non-zero I don’t write because it is a positive this is clearly a group under multiplication this is a

sub-group of Rx  because if I take two positive real number then multiplication is also positive

the inverse is also positive and so on. So this is a sub-group of this, so this sub-group so to

understand  this  sub-group  what  is  this  sub-group?  For  example,  see  when  one  wants  to

understand groups one want to understand them in terms of the known groups.



For example I want to understand this group in terms of the additive group of real numbers so in

terms of that so what do we do for that? So let us look at so let me write the number 1, so let us

take any a which is a real number positive real number and did not equal to 1 you will see why I

am assuming not equal to 1. What is the identity element in this group? One is identity element

in this group alright so look at the map R under addition to R what is the map? Take any x in the

real number and map it to ax , x is a real number a is number which is not 1 and so this is a

map.

What kind of a map it is this? When you have when you add the numbers and you take the

exponential the exponential laws will tell you this map is actually a group homorphism . So there

is this is a group homorphism to which group now, let us be more precise (R,+) to (R,.) and this

will never be zero, so it will actually be a map from non-zero real (numb) inside the non-zero

real number not only that this will never be negative. So therefore it is actually a map from R

plus to this group we wanted to study this is called an exponential map.

This is the standard way to convert additive structure to multiplicative structure and I want to

actually check that this map is an isomorphism this is a group isomorphism. So what do I do?

For that I have to give the map in the other direction but the map in the other direction is clear y

goes to loga y  this is and this is the loga y . So this two maps are inverses of each other so

when you want to  study this  group it  is  equivalent  to  study the real  numbers  group and in

particular one wants to study this one want to take a equal to e then you get a Euler’s exponential

map, this is a standard exponential map. Alright so that is one thing now the same thing if you do

it for complex numbers, what do you get?



(Refer Slide Time: 5:50)

 Now I will be little bit brief because I have to save some time. So now if you take the group (

ℂ  ,+) and the whole multiplicative groups ( ℂ
x  ,.) remember there is no positive negative

in complex number what we did in real numbers and there is a natural map here namely z going

to ez  and then obvious property tells you that this map is a group homorphism this is a group

homorphism. So that the standard property of the exponential that we study in the (this is expo)

the usual calculus first calculus course tells you this is a group homorphism this denoted by exp.

Now it is surjective this exp is surjective and the Kernel is what? Kernel is precisely (the kernel

is precisely) generated is a sub-group generated by 2π i , ℤ2π i  that is this is additive sub-

group of ( ℂ  ,+) so that means that if I go mod the kernel ( ℂ  ,+) mod this ℤ2π i  this is

isomorphic to ( ℂ
x  ,.) multiplicative group. This group is often called a Torus group ok more

than that I will not say right now. So this are two important groups which will come up in our

study sometime ok now third one. Now I want to resume the proof that G is finite.
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So proof, what we wanted to prove, we wanted to prove that if G is a sub-group of K×K  is a

field and the G is finite then G is cyclic alright. So what do we wanted to prove? G is finite let us

say of order n then I want to prove that there is so to prove that there exists an element g in G

with order of g equal to n, this is what we wanted to prove. Alright so note that if I take we have

noted already that if I take elements of G and their orders they are divisors of the order of G this

is precisely the Fermat's Little Theorem.

So we know on the other hand I want to know if d divides n, d is a divisor of n then I want to

denote this set all those elements x in G such that order of x is d this set I want to denote by

something I don’t need to denote I want to denote the cardinality of this set by some it will

depend on this d. So I want to denote it by α(d)  this is the cardinality. Look it may happen

that this set is empty and there is no element of order α(d)  and our problem is to prove that if

I take d equal to n then alpha of n is non-zero, non-zero means there is an element of that order.

Ok so what do we know? Only element of d what is the what is the bound on α(d) ? α(d)

note that  α(d)  is less equal to  ϕ(d )  where  ϕ(d )  is Euler's c function this is true for

every d of n where ϕ(d )  is Euler's this is the number of elements m such that GCD of m and

d equal to 1 and m is small or equal to d. So this is called Euler's quotient function this is number

of element which are smaller equal to d and of course positive not negative so that the GCD is 1



this is ϕ(d )  and what do we know about this Euler's ϕ  function the nice formula which I

will prove when I introduce group actions.

So nice formula is if I take m this is same as the sum of all ϕ(d )  where d divides n sum is

runnign over all divisors of n this is ϕ(d )  and how does one prove this formula? This is very

easy to prove just use this for cyclic group of order n and then count the number of elements of

order d there they are precisely the GCD co-prime etcetra so this formula I will take it under

today. On the other hand if I take any divisor of d and take this  α(d)  and now in I have

exhausted all the elements (so the) on the other hand this n is also same as  α(d)  where d

divides n.

So I have this equality and also I have this so if all the numbers are strictly smaller than if all

ϕ(d )  they are strictly smaller than if  α(d)  are strictly smaller than  ϕ(d ) ’s then this

cannot be equality.
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Therefore from this we conclude that (we conclude here from that ) there is an element there

exists an element as a divisor so that α(d)  is positive d is some divisor of n. So that means

what? There exists an element a in G with order of a to be d. If the order of d is to be alright so I

want to actually prove that what do we want to prove? Let us analyze what we want to prove? 



I want to prove that alpha of n is 1 I want to prove this is what we want to prove (to prove)

alright so if there is some d so that α(d)  is positive and then there is an element of order d

then what happen? Then look at this equation X power d minus identity this equation. So in this

equation definitely therefore if I remove if I look at the sub-group generated by a this is H a this

sub-group of  order  d  and all  other  elements  of  order  d  are  also contained there  because  so

therefore if I remove if I look at this equation in with G minus H a in this there is no element (no

element) in G minus H of a of order d.

Therefore  what  we will  conclude  that  is  α(d)  equal  to  ϕ(d )  actually  for  every  d  in

particular  α(n)  equal to  ϕ(n)  which is 1 and therefore there is an element of order no

ϕ(n)  is definitely non-zero because they are definitely co-prime numbers to n. So therefore

α(n)  is therefore positive that means there is an element of order n and therefore G as an

element of order n and that is what we wanted to prove that will in particular say that G is cyclic,

this proof also I am going to improve the problem here is I am not using so called group actions.

Once I start using group actions this proves will get even improved ok so I will not say much

about it but now I want to prove the theorem that I wanted to prove that given a prime number p

there is a field with cardinality  pn  ok before I do that so let  us say I need a concept of

characteristic, characteristic of a field, of a field or a ring. So we have a ring a, a ring means we

have two operations so that it is a ring and I will assume easily commutative so we have this ring

and we have additive group this is a group and then an element here the (additive) identity is

usually denoted by zero multiplicative identity is 1 so 1 be an element here.
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So it makes sense to talk about the order of 1, what is order of 1? Order of 1 is by definition you

take a sub-group generated by 1 so take H of 1 this is additive sub-group of A and if it is finite

the order is the cardinality if it is infinite if it is not finite then the order is 0, this zero if H (1)

is not finite and cardinality of H (1)  if H (1)  is finite. Let us see what H (1)  is, what is

H (1) ?  H (1)  is  a  sub-group  generated  by  1  right  that  means  we  have  to  keep  and

remember then binary operation is plus. So you have to keep adding one. So if you if this was

finite after adding one sufficiently many times it will become zero. So that is the case when this

H a is H (1)  is finite.

Never becomes finite means no matter how many times you add one you will never get zero so

that means the order of one is either zero or this set. So what is H (1) ? H (1)  is precisely

sub-group of A generated by 1 but that is precisely z times order 1 that is what will be said you

know, so how many times it will go on if order 1 is not if it is this is not finite it is z otherwise it

will be some Z mod order. So this is the order ok so in other ok so what is the characteristic?

That is order 1, so that means this order 1 is a Kernel you remember this as a the map χ  from

ℤ  to the ring A namely any m raise to n time 1 that means m and 1+1+ ...  either 1 n times

or minus n times and the kernel of this is precisely the order.

So I am saying something wrong here, so this is not correct kernel of this χ  is precisely the

order of 1 so that means ok. So that is precisely the characteristic we defined in the earlier way



also in the earlier definition also it is a generator of the kernel of this  χ  map this  χ  is

unique homorphism and the generator is called the characteristic that is order 1. 
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Ok so now if you have a finite field so let us take K to be finite (finite field) then this is a finite

set and ℤ  to K this χ  map is definitely will have a non-zero kernel if it is in kernel is zero

that means this  ℤ  is sits inside K injectiveley so that cannot happen  ℤ  is infinite K is

finite so definitely because this K is finite Kernel of χ  which is order of 1 this 1 is I K this is

not zero, this is generated by the order of 1 which is not zero.

So therefore there is a injective map from ℤ  mod let us call this as some number n so this

ℤ  mod generated by order 1 K this is inside goes inside K but K is a filed so therefore this is

a sub-ring of the field which is also integral domain (integral domain) but is domain and it is

finite because this is non-zero so this is finite integral domain, finite integral domains are fields

so therefore this is a field and therefore this order of K order of 1 K which is precisely the

characteristic of K which is a prime number this is P so this is small p let us call it, therefore we

have plead that the characteristic of a finite field is always a prime number p and then we have K

here and this is what?

This is nothing but ℤp  in the notation this ℤp  is a sub-field of this, this is finite therefore

if you think this K as a vector space over  ℤp  the dimension of K as a vector space over



ℤp  this is some d then what? Then that will mean that this K is isomorphic to ℤp  vector

space of dimension in this is Z power d that means cardinality of K is precisely cardinality of

ℤpd  which is  pd . So therefore what did we prove? We have proved that if K is a finite

field then the cardinality must be power of p. 
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So I will note it what we have proved so 7 we have proved that cardinality of a finite field K

finite  must  be  p  power  some  d  or  p  is  some  prime  number  and  in  fact  that  p  has  to  be

characteristic of K which is this p is uniquely determine by K.

Now I want to prove the conversely, converse is conversely if p ant prime number and d is any

natural number then there exists a field capital K with cardinality  pd  ok. So this was first

proved by this was proved by E. H Moore in 1893 this Moore was a student of Kronecker and

Weierstrass actually Moore was from Chicago University of Chicago and those there was it was

not possible to do PhD in mathematics in America. So they were going to Europe especially to

Germany and France they going there to do PhD’s and E. H Moore was the first mathematician

in America who has worked extensively on the fact that to start a PhD program in America and

that was possible in the early 20th century after the big efforts of Moore.

This Moore is the one who proved this theorem I will continue this proof in the next lecture. So

remember today I have only I have made a digression on the groups and ultimately our course



revolves around using group theory in theory of equations, solutions of equations. Solutions of

equation was much more older than the group theory subject but nowadays group theory is much

more taught that the theory of equation and I also want to stress more on theory of equations so

we will come back to theory of equation we will keep coming back and going this whole course

we keep a roller coaster between the group theory and theory of equations, thank you.


