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Alright, in the last lecture we saw that particular polynomial degree 2  X2
+1, as a polynomial

with real coefficients this polynomial is a prime polynomial and which is equivalent to the fact

that this polynomial doesn’t have a zero inside the field of real numbers I want to generalize this

or I want to analyze for a general field when can this particular polynomial is prime polynomial

in K [ X ] or equivalently when can this polynomial has low zero inside the given field K. 
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So we are going in this example we are going to analyze this situation, example, K field and we

consider this very special polynomial X2
+1, this is a polynomial of degree 2 in the field K over a

field  K [ X ] over a field K, so it is a polynomial in  K [ X ].  So when exactly  X2
+1 is a prime

polynomial in K [ X ]. This is equivalent to saying the zeroes of this polynomial inside K there is

nobody, this is empty side. So this means so that is X2
+1 has no zero in K, this is what we want

to analyze, for example when you take a field K to be equal to the finite field  ℤp where p is

prime, in this case we want to analyze.



So that will give us extensions of the field ℤp of degree 2, because this is a degree 2 polynomial,

we prove the following lemma.
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So this is a lemma, let p be any prime number, p belong to P be a prime member and consider the

polynomial X2
+1 as a polynomial in ℤp [ X ] , then X2

+1 has no zero in ℤp, we have seen that this

is equivalent to saying X2
+1 is a prime polynomial in ℤp [ X ] this also we have seen we have just

remarked about but this is equivalent to saying in terms of the numerals this (this is con) this is

equivalent to saying p is congruent to 3 mod 4. So that is 4 divides p minus 3 that is equivalent to

saying this alright.

So let us test for few small values of p, lets take p equal to 2 then p is not congruent to 3 mod 4,

p is congruent to 2 mod 4 but then in this case X2
+1 is seen as X plus 1 whole square because p

is a characteristic so it is this and therefore this polynomial actually has a zero one as a zero of X.

So in ℤ2 [ X ], in ℤ2 [ X ] actually this X2
+1 splits into linear factors, alright. Where if such a thing

then should test for p equal to 3 then p indeed congruent to mod 4, therefore by our observation

this lemma is X2
+1 is a prime polynomial in ℤ3 [ X ], this you can test very easily because Z, this

is a degree 2 polynomial, if it is not prime then it will have a zero and the only possibility for

zero is 0, 1 and 2, because this are the only elements of ℤ3 and to check take each of them and

plug it in here and see whether it is zero or not.



So when you plug it X equal to zero, this is one which is (now) which is not zero when should

plus it in 1 then it is 1 plus 1 2 which is definitely not zero and if you plug it in 2 that is 22 is 4, 4

plus 1 5, 5 mod 3 is 2 which is zero again. So therefore this is a prime polynomial in  ℤ3 [ X ],

alright. 
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So we prove this, so proof of lemma, lemma is two parts so we will first prove this way that

means we will suppose p is congruent to 3 mod 4 and we want to check that the polynomial

X2
+1 is has no zero.

To prove that X2
+1 has no zero in ℤp, no, alright. So suppose it is a zero, so suppose if x in ℤp is

a zero of X2
+1 so that means when I plug it in capital X equal to small x it becomes zero, X2

+1

is zero but definitely this x is not zero because if x were zero then X2
+1 this is 1 and 1 equal to 0

is not possible, so x is definitely not zero and this equation will tell you X2 equal to minus 1 but

then x is non-zero element in the field, so x belong Z because this is a group because ℤp is a field

and this is a group of order one less element in ℤp that p−1.

So this  is  a  group under multiplication  of order  p−1 and x is  a one element  there,  so that

X2
=−1 so therefore X 4 will be equal to X2 but X2−1 and minus 1 square is 1. So x power 4 is 1,

so this means the order of the element (order of the element) small x in the group  is 4 because x

is not null and X2−1. So therefore the smallest power of x which becomes identity in the group



is precisely 4. So order x is 4. But let me recall I have only used here very easy theorem (when)

the in fact it is the first theorem in when one start studying finite groups.
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The first is theorem is called, is due to Lagrange, so this is Lagrange’s theorem that say that G if,

let G be a finite group, G be a finite group of order n that is and if the cardinality of G and g is a

an element in G then the order of g, small g divides order of G which is n, this is known as

Lagrange’s theorem, Lagrange have discovered this theorem while he was studying the relations

between the roots of a polynomial and the coefficients of the polynomial and especially when he

was dealing with rational functions fields in many variables and the permutation group operating

on this and studying the fixed points etc-etc during that time he has guess the theorem which his

offcourse very easy to prove but Lagrange never dealt with groups, ok.

So we have a situation x over an order an element in  ℤp
x  and order of x is 4 but then 4 should

divide the order of  ℤp
x  but  ℤp

x  is order  p−1 so 4 should divide  p−1 but this is equivalent to

saying p is congruent to 1 mod 4 but our assumption was (that our assumption was) was p was

congruent to 3 mod 4 which contradicts our assumption that the polynomial  X2
+1 has a zero

inside this.  So therefore  we have proved one way implication.  Now conversely so we have

proved that so we have proved we proved if p is congruent to 3 mod 4 then ℤp [ X ] modulo ideal

generated by X2
+1, this is a field.



It I an extension field of  ℤp and degree of the field extension is true. So in fact the degree of

ℤp [ X ] modulo the ideal generated by X2
+1 in this field over ℤp this degree is 2, this is exactly

like real numbers, complex numbers. 
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Now we want to prove the converse, so we want to prove this way, so that means we want to

prove that so suppose X2
+1 in ℤp [ X ] is a prime polynomial and we want to prove, so to prove

from here that p must be congruent to 3 mod 4, this is what we want to prove. 

So suppose not, suppose p is not congruent to 3 mod 4, so what are the possibilities for p? Then p

must be p cannot be congruent to 2 mod 4 because p is a prime number.  So therefore only

possibility is p has to be congruent to 1 mod 4, since p is prime. So once p is congruent to 1 mod

4 that means what? That means, 4 divides p−1 and we are in this group now ℤp
x , this is a group

of order p−1 and I want to use the fact that this group is cyclic. We are going to prove this we

will prove later in our lectures that this group ℤp
x  this group is cyclic and I have a prime we have

a devisor 4 of these order of this group so and since 4 divides p−1 there exists an element x in

this group such that order of that element order of x equal to 4.

This is true because in every cyclic group every divisor of the group order of the group in a

cyclic group in a finite cyclic group every for every divisor of an order of the group there is an



element of that order, so that is what I have used this is a cyclic group 4 here divisor of the order

therefore there is an element x in that group of order 4. 
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Once you have this order is 4, so x raise to 4 is 1 but then order of what will be the order of x2

order of x2 has to be 2 in minus 1 is an element in ℤp
x   and what is the order of −1 ? Order of

minus 1 is also 2 but then there is only in a cyclic group of even order that but in a cyclic group

of even order there is exactly one element of order 2 but here we have likely the two elements x2

is 1 and minus 1 is other 1 which are likely of order 2.

So therefore x2 has to be minus 1 but that means this X2
+1 is zero so that means x is zero of the

polynomial X2
+1. So that is what we wanted to prove, that is what we wanted to prove. So we

finish this proof of this lemma that this proof also one can directly also see as follows. Direct

proof, look at x, x equal to look at p−1 by 2 this factorial look at this element, then we know x2

is p−1 factorial which is congruent to minus 1 mod p this is precisely Wilson’s theorem.

So remember what we wanted to prove by assuring X2
+1 is a prime polynomial we wanted to

prove p is congruent to 3 mod 4 by assuring p congruent 1 mod 4 we got a contradiction because

this is zero of this polynomial that means this polynomial is not a prime polynomial that is X2
+1

is not a prime polynomial in general p x. This is contradiction to your assumption therefore p

cannot be congruent to 1 mod 4 therefore p has to be congruent to 3 mod 4. 
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So altogether we have roved the lemma and the next question is, if I have a polynomial μ in with

coefficients in the field, K field and degree of 2 a degree of μ is 2 or 3 how do we decide this

polynomial μ has no zero inside K?

So that is no zero of there is no zero of μ inside K but which is if they may zero that will mean

that this polynomial has to be μ is a prime polynomial because if μ is not prime it factors one of

the factor has to be because the degree is 2 one of the 2 or 3 the degree of μ is 2 or 3 therefore

one of the factor has to be linear  if it  factors.  So that it  cannot be because linear factors in

corresponds to zero of μ inside K. So therefore if they were zero a μ is prime polynomial that

means if I go modulo the polynomial ideal generated by the polynomial μ this must be a field, so

you get a field extension and this field extension the degree of the field extension is equal to

degree of μ.

So again you can simply test let us take K equal to  ℤ2 and let us take the polynomial  μ to be

equal to X2
+X+1 this is degree two polynomial and now we want to test whether L is field or

not. This modulo μ so to test that you just have to test whether 0 and 1 they are zeroes of this

polynomial μ but to check that I just put capital x equal to zero and test if I put capital X equal to

0 you get 1 which is not zero because capital X equal to 1 I put  12
+1 this is  1+1 which is 2

which is 0 and the remaining one so this is not zero.



Therefore this are no zero therefore this L is a field, that is checks for the small values. Similarly

you can check for the polynomial X3
+X+1 and in this case in the earlier case the degree of the

field extension is 2 and it is over ℤ2 therefore the cardinality of L will be equal to 4, in this case

once you check it is prime polynomial then the degree of L over K will be 3 and therefore L will

have cardinality 23 which is 8.

That is how one constructs finite fields with a bigger cardinalities, so with this we will stop here

and continue with this lecture and remember two important  things I have used in the above

proof, one is easy one which is Lagrange's theorem for groups which relates the order of the

elements and order of the group and other one is little bit more serious that the cyclic groups

(the) if I take ℤp field and look at the multiplicative group of ℤp that is a cyclic group. This is

what we have to prove in the coming lectures, thank you very much. 


