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Lecture 16
Characterization of Algebraic Elements

Ok, so we have been debating on the concept algebraic and its minimal polynomial and so on. 
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So let me formally define, suppose so definition, K field, base will be always and A K algebra

we say that A is algebraic over K if every element x in A is algebraic over K that means its

satisfies a non-zero polynomial with coefficients in K then such an extension is called algebraic

extension. For example, we have seen already finite dimensional algebra over always algebraic,

if dimension of K as a vector space over K is finite then A is algebraic over K, particular case

particularly  you can  take  A equal  to  let  us  say  ℂ  and  K equal  to  ℝ  then we know that

dimension of ℂ  as a vector space over ℝ  is 2 which is finite therefore every element so every

element  ℤ  in  ℂ  is  algebraic  over  K,  algebraic  over  ℝ  and  it  satisfies  (it  satisfies)  a

polynomial of degree less equal to 2 because the dimension is at most 2.

Minimal polynomial will be bounded by the dimension of the bigger algebra. So therefore it is

either a linear polynomial or quadratic polynomial. So you know how to find that as it is very



easy to find that. So suppose z is x+ i y  then you want to find this minimal polynomial of z, so

think of this x y,  x+ i y  as x, y because we have identify (identified)  ℂ  with this real vector

space of dimension 2 and this is the isomorphism between them, 1,i is the basis so that means

this, so that means I want to find the minimal polynomial of this, which is like a particular case

of the earlier example that means that I will do it by finding the matrix of this multiplication left

multiplication by this element so that means what matrix I want to find? 

That means I want to find if I take a map from R
2
→R 2

 this is a left multiplication by this is x, y

that means e1  goes to x e1  and e2  goes to  y e2  and then the matrix is what? It is clear, the

matrix is x here, y here, 0 here, 0 here, then we have to find the minimal polynomial of this

matrix.  So and then  we would  get  back to  the  identification.  So check that  there  is  a  little

sloppiness  in  this  so which is  better  corrected  like  this.  So,  because we have identified  this

identification is only identification in a vector space, it is not identification as a algebra that is the

sloppiness here.
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So the best way to do is, so we want the real polynomial and degree with at most 2, so obviously

(X−z)  should  be  a  factor  and  the  other  factor  will  be  (X−z) ,  this  polynomial  is

X 2
−( z+ z) X +|z|2 , this is a minimal polynomial. So when this is 2 times real part of z I think



this we have argued earlier also this is the x
2
+ y2

, |z|
2

 is by definition x
2
+ y2

, so this is the

minimal polynomial it can thus satisfies smaller than that unless the z is already a real number

and in that case it will be linear polynomial, so that is how one should try to calculate.

Now it becomes important to test how do we test an element is algebraic or not in a simpler way?

That means I want to bring in more theoretical consideration to decide for example, before we

don’t have to check anything if I give you a finite dimensional algebra and say you check that it

is  algebraic.  We definitely  know finite  dimensional  algebraic  is  an  algebraic.  So  now I  am

preparing to state the characterization of algebraic elements. So remember the situation that this

A is algebra and x as a element there which is algebraic then we have this of algebra generated

by x that is K [ x ]  which was isomorphic as a K algebra this is under the 
ϵ x  this is K

[X ]

⟨μ x⟩ ideal

generated by 
μx .

So x is algebraic then this, this is isomorphism in the, so that means the degree of this is 
μx  so

first thing to note here is if A may not be a field so first thing to note here is first thing to note is,

if suppose A is an integral domain then this is a subring of which is sub-algebra of this so in

particular subring so then, subring of an integral domain in real domain so this K [ X ]  is also an

integral domain that means this residue class algebra mod 
μx  is also integral domain because

these are isomorphic algebras.

So and so K [ X ]  mod ideal generated by 
μx  is also integral domain, but that means this ideal is

a prime ideal.
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So that is the ideal, ideal  
μx  is a prime ideal so that is then 

μx  is a prime polynomial in the

polynomial ring over K, let me remind you prime polynomial means a monic polynomial which

is not a unit and it is it cannot split into two proper factors that means the only divisors are  unit

times that itself these are the prime polynomials. So for example, in ℝ[ X ]  we have seen what

are the prime polynomials, if K were ℝ  the prime polynomials examples are monic am writing

monic.

So one is X−c  this are linear ones and the other one is X
2
+b X+c  with the discriminant that is

b2
−4 c  negative this are precisely the prime polynomials over ℝ[ X ] , over ℚ  there are many-

many infact given any degree we have a prime polynomial and many. So given n∈ℕ  X
n
−P

or X
n
−pq  all these are prime polynomials over ℚ . So ℚ  the theory will come more difficult

over  ℝ  it will be simpler because and the elements have C over  ℝ  which can satisfy either

linear polynomial or quadratic polynomial with the discriminant negative.

Ok, so now it is a if it is an integral domain let us take this case for because ultimately we want

to concentrate on algebraic which are fields in fact but if it is a field then definitely 
μx  is prime

polynomial and then this K [ X ]  is an integral domain definitely.
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Let us consider this case, in that case I can talk about its quotient field, so quotient field of this

integral domain is usually denoted by K round bracket x, that means what? And why do you

denote it by this notation? This means their rational function in x but they should make sense so

that means what their fractions 

F (x )
G ( x)  divided by G(x)  but then this should make sense, so F

and G are two polynomials in K and the G cannot vanish at x, in particular G is not zero.

So take those fractions and that will form obviously as field is over a field so as shown where

actually here now that A is a field or not necessary a field but then this may not be contained in

K, definitely this make sense but it may not be contained in K, in K when A is a field actually

this is small a is a field of A which this real domain is contained in it. So I think I hope you have

seen the construction general construction of an quotient field of an integral domain from an

integral domain. So that is the similar way we have seen in the school already that how do you

construct ℚ  from ℤ  this ℚ  is a quotient field of ℤ , this is ℚ  t ℤ , I will denote standard

notation I will denote ℚ  t means the quotient field name.

So you take the integers and take their fractions a by b where a, b are integers and b is non-zero

such fractions is form a field and it is the smallest filed that z can contained, similarly for this so

therefore  this  K (x)  is  smallest  field  which  contain  this  K (x)  and  remember  there  is  no



specially that this x is one element I could have done it for a bunch of elements namely I take the

sub-algebra  generated  by  that  and  if  that  sub-algebra  is  integral  domain  I  will  embed  in  a

smallest quotient field and that, that is what the construction I am talking about.

If I have (small) if I have arbitrary elements x1  to xn  and consider the sub-algebra generated

by them, sub-algebra generated by them means the smallest sub-algebra of A which contain all

this guys, this is the smallest K sub-algebra of A containing all this guys x1  to xn . So if this is

an integral domain I have talked about the quotient field and then I will use the notation K round

bracket x. So this is precisely what I keep saying in the earlier lecture that given a field I want to

adjoin an element and make it a bigger field, this is for example bigger field.

I have adjoin the desk to the field, similarly here and then one element but many-many elements.

So I will disgrace and this more elements more right now I concentrate only on one element and

state our theorem which characterizes algebraic elements, so this is the theorem I am interested

in doing. 
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So, theorem, as usual K is a field A is a K algebra and x is an element in K, element in A and we

want to know when this element is algebraic, so I am going to state equivalent condition, so one

of them will be algebraic.



Ok, then and I will use this abbreviation all the time in the course The Following Are Equivalent,

so  this  is  the  abbreviation  for  the  following  are  equivalent,  this  is  throughout  the  lecture,

throughout my life I have used this because of my teacher ok so 1, the K, the sub-algebra the K

sub-algebra K [ x ] , this is a sub-algebra of K generated by x is a filed. Remember what do you

know? This is a sub-algebra and all elements are precisely the polynomials evaluated at that x

and the condition 1 says it is already a field, 2, x is algebraic over K and the minimal polynomial

μx  of x over K is a prime polynomial in K [ X ] .

So you see, if you want to test somebody the algebraic you just have to check that the sub-

algebra is a field, so it is an integral domain, here it may not be integral domain, it is a part of

that, it is an integral domain and it is a field. Ok, so let us check that remember I am not assuring

the field I am assuring you is only a K algebra, this is only a K algebra. So in this case sub-

algebra is a field that is equivalent to saying x is algebraic so let us prove this.
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So proof, proof, so it gives the fieldness of this case of algebra not only gives information that x

is algebraic but it also gives about the minimal polynomial that it is a prime polynomial alright,

so (i) implies (ii) so I have given that, that sub-algebra is given K [ x ]  which is a field remember

this  is  isomorphic  as  a  K  algebra  to  K  polynomial  x  modulo  ideal  generated  by  the  
μx

polynomial of x, this we know, this is by definition, this is a K algebra isomorphism, alright, so



this we know ok so the first thing I want to know what is, this 
μx  has to be we have given this

sub-algebraic a field, then I want to prove that, so this is just for recalling, what do you want to

prove?

We have given this, so given, K x is a field then from this isomorphism we conclude that Mu has

to be non-zero then 
μx  has to be non-zero because if  

μx  is zero then this (isomorphism) but

this K is not a filed, K polynomial x is never a filed, so 
μx  is non-zero but that already means

that x is algebraic because algebraic means it should satisfy a non-zero polynomial and this is the

minimal polynomial, this is non-zero means and x satisfies that means the Kernel is non-zero

therefore x is algebraic, also and now I want to prove that it is a prime polynomial but if it is, so

if suppose 
μx  splits into two factors F and G then, then what do you know?

Then  
μx  evaluated at  x is zero that is by definition of  

μx ,  so this  will  be also F times G

evaluated at x but this because it is an algebraic morphism evaluation in algebraic morphism so

this is F(x)  and G(x)  and where are these elements? These elements are in K small x, this is

this but this is to be a field and this product is zero in a field therefore each one of them will be

zero. So that will imply F(x)  is zero also G(x)  is zero now F(x)  is zero or G(x)  is zero but

F(x)  is zero will mean that so that will mean that F.
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So that will mean that F belong to ideal generated by 
μx  or G belong to the ideal generated by

μx  in particular the degree of F will be big or equal to degree of 
μx  or degree of G will be big

or equal to degree of 
μx  but there is a integers factors they were proper factors of 

μx .

So this is to clear the degree 
μx  this is also (())(23:25) degree 

μx  or contradiction either this or

this is a contradiction, a contradiction. So that proves that proves that if K small x is a field then

x must be algebraic and the minimal polynomial should be prime polynomial. Now conversely

that is two plus one they have given what did we give? What we have given? We have given that

μx  which is polynomial in K [ X ]  minimal polynomial, this is monic it is a prime polynomial

and X is given to be algebraic, so that means this 
μx  is non-zero given because (kernelly there

are) generally has to be non-zero so it is prime polynomial and I want to prove that K [ x ]  is a

field.

But that is also obvious because what do we know? We know that 
K [X ]

⟨μ x⟩  this is isomorphic,

as K algebras to  K [ X ]  and we want to (prove), this is a field, but I have given this is prime

polynomial, so it is prime ideal.

So 
μx  this is a prime ideal in K [ X ]  and non-zero prime ideal because 

μx  is non-zero therefore

now I want to use the fact that K [ X ]  is a principle ideal domain in that every non-zero prime

ideal is maximal. Once i know that this 
μx  will be a maximal ideal and residue class ring of a

maximal ideal will be a field and therefore this will be a field. 
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So enough to note that we have learned in earlier course, so enough to note that every non-zero

prime ideal in a PID, PID stands for principle ideal domain is maximal. I will not prove this but I

strongly recommend that you should check this on your own by recalling whatever you have

learned in the first course in algebra mainly groups, rings, fields.

But this I can digress a little bit simpler way but you will have to use same technique to prove

that every non-zero prime ideal in a PID is maximal. So what do you want to prove? I want to

prove that this is a field so I will integrate for you that this is a field without using this, this is a

field you want to check that alright. So that means they want given any element here non-zero,

zero not equal to any element will look like F(x)  where F is a polynomial in coefficients in K.

 I want to produce a inverse for this F, this means what? This means this F cannot belong to ideal

generated by 
μx  because 

μx  this ideal precisely all those polynomials is vanish on x, so this is

not there, that means and we know we have also given that this 
μx  is a prime polynomial, 

μx  is

a prime polynomial. So that means 
μx  cannot so this means 

μx  does not divide F∈ K [ X ] , this

is a prime polynomial and this does not divide this so their GCD should be 1. So this means

GCD of 
μx  and F is 1, but you remember like integers GCD of two polynomials over a field is 1

then by linear combination of the two.
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So that will imply I can write 1 as (what do have) Sμx+T F  with S and T two polynomials with

coefficients in K this is known as the Bezout’s lemma, this is what is true for integers and the

same proof, same proof for polynomial as do it for integers because we know this polynomial

ring has a factorization and the division algorithm that use the same thing. Now once you have

this, now evaluate this, this is a polynomial of entity evaluate this at small x.

So that will imply 1, 1 you have evaluated as x is 1 only, S evaluated at x, 
μx  evaluated at x

plus T evaluated at x times F evaluated at x but 
μx  is 0,because 

μx  is minimal polynomial of x,

so this term goes so 1 equal to T x times F x, so this T x is inverse of F x. So assuming the F(x)

is non-zero I have proved that it again inverse and this inverse belongs to K small x that means I

have proved that this K [ x ]  is a field that is what the condition we wanted to prove which is 1,

that is 1 satisfied.

So this is in some sense less technical but and also it gives you actually this method actually

gives you how to produce inverse of F but soon or later we have to go and use higher high power

machinery which will have vocabulary form what is called commutative algebra. Commutative

algebra means prime ideal, maximal ideals and so on. So time to time I can give simpler proves

and also use some new definitions to give little bit proves which involve more concepts that way

one can learn more concepts easily through this examples.



So I will stop here and will continue about algebraic extension next time, next time I am going to

attach a group to an algebraic extension and what will be called a Galois group and we will study

the algebraic extension using this group and that interplay I will become I will make it more and

more intemater so I stop here still next time, thank you.


