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Let me recall that in the last lecture we have seen examples of non-algebraically closed fields

and we have also stated fundamental theorem of algebra 
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which says that the field of complex numbers is algebraically closed and the proof is pending.

When I have enough prerequisites I will come back to the proof of this. That is one thing. 



Next thing is today I am going to introduce what are called algebraic extensions and study

their basic properties. And to 
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do  this,  also  I  will  need  some  concepts  from  elementary  abstract  algebra  which  are

concerning rings, ring homomorphisms, ideals, prime ideals etc. 

So all these concepts I will briefly recall with the some guiding examples. So they should

keep us going little  faster in pace and also we will  reach the subject  with more relevant

prerequisites. So as you know that we are studying polynomials over a field and especially

their  zeros or their  roots and we have seen that the zeroes of a given polynomial with a

coefficients in a given field, that may not lie in the field K. 

Only some of them can lie in the field K and all of them may not lie in the field K. So we

want to extend our given base field to a larger field so that the given polynomial has all

zeroes in that bigger field. This is our main aim now and then we want to see how minimally

we can do that  and study these relationships.  Those are  precisely what are  called Galois

extensions of the polynomial F. 

So  let  slowly  start  recalling.  Suppose  when  we  have  a  polynomial  F,  when  we  have  a

polynomial  F...so  before  I  go  on  to  the  polynomial  I  briefly  recall  what  is  ring

homomorphism. Ring homomorphism is I think, I had briefly recalled earlier also. But let us

do it once again. 
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So when we have two rings R and S, they are rings and let me remind 
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you, when I say rings, by definition they are commutative rings with unity. Unity means

multiplicative 
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identity  that  means  it  is  a  neutral  element  for  the  multiplicative  monoid  made  of  R,

multiplicative not of S. So ring homomorphism is a map ϕ  from R to S 
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such that it satisfies 3 properties. 

One, it should respect the addition, that means it should be, when you think it is a map from

(R ,+)  to (S,+), it should be a group homomorphism. So this is a group homomorphism. 
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And when you restrict, when you think it is a map from a monoid, a multiplicative monoid of

R to multiplicative monoid of S this should be a monoid homomorphism. 
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And let  me stress  monoid homomorphism has  two,  two requirements,  that  it  respect  the

multiplication that is one, so this is ϕ(x×y )=ϕ(x )×ϕ( y )  and again and again 
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I mentioned earlier also, this x y is a product in R and this ϕ(x)ϕ( y )  is a product in S. 

So though we are writing in the same, it is understood that when you write like this, first we

are taking the product in R and then taking its image. And this means first taking the images

and then multiplying in S. These two results are same. 

So that is first property of the monoid homomorphism. Another one is  ϕ  of identity  1R

should go to 1S . Normally 
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many books, they do not assume this but I will assume in this course that it  satisfies this

property and it is very important. And I 
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do not, again the group homomorphism, just whether you add and take the image or take the

images and add this result is same. 

So such a map between a ring is called ring homomorphisms. And now we want to see some

examples of ring 
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homomorphisms. So some examples and usually example should consist our rings which we

want to study.

For example, so, so examples. 
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One, take the ring ℤ  and take R any other ring, say this is any other ring, any ring. And

ℤ  is our ring of integers. 
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And so I want to give ring homomorphism from ℤ  to R. So that means 
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I should map n to somewhere and 
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check that it satisfies the properties of ring homomorphism. 

But you see, also remember that when we want to give a ring homomorphism that we need to

map one of the ring ℤ  to one of the ring R. That means you have no choice. 1, usual 1,

this is usual 1, it should go to 1R . 
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And once it, 1 goes to 1R , then this n has no choice. Because this n, when it is positive,

you think it is 1+1+ ...+1  n times, when it is negative you think it is −1−1−…−1  n

times. 

So this n, you should think 1+1+ ...+1  n times when n is positive and 

(Refer Slide Time 07:46)

−1−1−…−1  n times if n is negative. Of course when n is 0, 
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we know we need a group homomorphism from ℤ  plus to R plus. So 0 has to go to 0. So

0 has to go to 0 
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and then I know 
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it should respect the addition. 

That means when I know 

(Refer Slide Time 08:15)

where 1 goes, this is clearly has to go to n times 1R  
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because it should respect the addition and this, this will automatically go to −n×1R . 
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So every time n has to go to n×1R . That is what we conclude. 



(Refer Slide Time 08:39)

So that means there is exactly one ring homomorphism from ℤ  to R. There is a unique, so

I will write the result; there is a unique ring homomorphism from ℤ  into any other ring R.

And this unique homomorphism 
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I am, it depends on R because it tells 
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where 1 goes to R, so which is denoted by χR . 
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So chi of R is a ring homomorphism, the unique one from ℤ  to R. This is very important

fact 
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and I will keep on using this again and again. So this is one prime example what we will keep

looking and the next example is then, many, many other examples I want to give together.

So second examples, second example, let us 
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take K to be any field. 
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Actually assuming field is not really necessary. We could do, or more generally K to be any

commutative ring. 
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But when, when we apply, we usually, we are going to apply many things to the fields only.

But there is no harm in knowing the general definition.

So  then  you  consider  a  polynomial  ring,  from  this  field  K  we  have  constructed  the

polynomial ring whose elements are precisely the polynomials. And I want to give, R is any

ring, R is any arbitrary ring, arbitrary and I want to give ring homomorphism from here to

here. 
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So whenever I have an element small x∈R , I am going to give 
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a ring homomorphism corresponding to this small x. 

So therefore I am going to denote it by phi of small x, not phi, sorry, 
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ϵx . I am going to define a map ϵx , 
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so how do I define it? 

Take any polynomial F, this is a0+a1 X+ ...+an X
n . Any polynomial looks like this. 
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And these I want to map it to somebody in R and I know only X in R. And I know these a is.

They are fixed when I fix F, and I want to map this somewhere. 

So I want to try whether this makes sense, a0+a1 x+...+an x
n . 
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And this should again be an element in R. So naturally we should 
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put a condition on R, not arbitrary 
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but  it  should be,  it  should have multiplication  of  K inside that,  there should be a scalar

multiplication of K on R.

So we need to assume, in order to make sense, we need to assume that 
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R is what is called a K-algebra. What is K-algebra? 
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K-algebra is where there is a multiplication also and there is a scalar multiplication also. 

So I want to elaborate this and come back to this example. And then we will have many more

examples of this kind. This is very important. So let us now recall what is a K-algebra. So, so

now we have base ring K. K is, I will call it base field. One could take also ring, commutative

ring or commutative ring. But commutative is very important. 

And 



(Refer Slide Time 13:31)

we have a ring R, R is a ring. Or better to write it 
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a definition, a ring R which, just to remember R has a two binary operation, addition and

multiplication 
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and they satisfy the usual properties of the ring, both these binary operations, ring R is called

a K-algebra if there exists a scalar multiplication, scalar multiplication one 
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should think a map from K×R→R . 

This is usually denoted 
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by, scalars are the elements of K and these elements of R are denoted by small x, they should

go somewhere which is an element of R again and that is denoted by ax. This is a 
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scalar multiplication. This is called a scalar multiplication of K on R which is a map 
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like this, which satisfies the compatibility properties, compatibility properties. 

What are they? They are the following properties. That simply means
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that this scalar multiplication should not meddle, should be compatible 
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with this given multiplication of the ring R. This is the given multiplication of the ring R. So

multiplication, one should again think it is a map from R×R→R  which is associative etc

etc.

So what are the compatibility properties of the, of the scalar multiplication of K? So, so first

of all with the plus, so first one is with the addition of the ring it should be compatible. That

means if I take this R with plus, this abelian group, this is a K-vector space. 
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That means whether you add first and multiply by a scalar or you multiply by scalars and add

this result is same. 



So that, I will just simply write it a(x+ y )=ax+a y . Also 
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the, if I add in the field K, so that is (a+b)x=ax+b x . This is for all a b in K and for all

x , y in R. 
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And moreover 1×x=x . This 1 is now 1∈K . 

So these 
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are the compatibility properties so that it becomes the vector space. One more thing I should

write it really, that is multiplication in K, that is (a×b)×x=a×(b×x) . 
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So these four properties 
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which satisfies, the scalar multiplication which satisfies these four properties; that will make

this abelian group R plus as a K-vector space. 

And when you are dealing 
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with, not with the field case but with the commutative ring case, then one, instead of vector

space, one 
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uses the word K-module. Properties 
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are the same, so when one says the K-vector  space,  that  indicates  the base ring you are

assuming is the field. Otherwise it may not be a field, it is a commutative ring. So this is the

compatibility of the scalar multiplication with 
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this plus, and obviously the, the addition and multiplication of the given field. 

Second one, now with the multiplication of the ring. These are the compatibility with the

multiplication of the ring. Now I will write the multiplication in the ring by just dot. 

So that means what, whether I multiply first in the scalar, so that means if I have a, b are in

the scalars and x, y are elements in the ring R, 
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whether I multiply this scalar with this x, the resulting element is in R and this scalar with

this element b y, I get 2 elements in R and I multiply these elements in the ring. 



This result should be, first I multiply these a and b in the field K and then multiply these

elements in the ring x and y. And then multiply 
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this as a scalar multiplication.

So this result should be same. Then one says that this scalar multiplication of K on R is

compatible  with the ring multiplication of the ring. So typical example is the polynomial

algebra. So this is called an algebra. So let us see some examples.

6, examples. 

(Refer Slide Time 19:44)



One, K field and then this K [X ]  is a polynomial ring. 
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Then K [X ]  is a K algebra with scalar multiplication a times any F to be, you multiply all

coefficients of a by, F by a. So this is aa0+aa1 X+...+aanX
n  

(Refer Slide Time 20:42)

where F is a0+a1 X+ ...+an X
n . 
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This is how the scalar multiplication of K on K [X ]  is given. So I should have said this

example before, but does not matter. If R is any ring then R is ℤ  algebra in a unique way.

There is only one scalar multiplication, with the scalar multiplication. 
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So we need a map from ℤ×R→R . 



(Refer Slide Time 21:39)

So this is obviously, if you take any n, take any x and map it to n x. 

n x is clear. nx is  x+x+...+x ,  n times 
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when n is positive and otherwise it is −x−x−.. .  n times when n is negative. So this is,

this is the only one scalar multiplication which makes R as a ℤ  module.

Ok, one more, this is what we will use it more often, 7, third one, if I have, K is a field

contained in a bigger field L. So these are fields, 
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so this is a bigger field and when I say K is a subfield of L or L is a bigger field than K that

means we assume that the operations of K are induced from the operations of L, or one says

operations in L are extended from the operations of K. 

So such a thing is called a field extension. 
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They need not be field also. If K is a ring and L is a ring, then we say, if K is a sub-ring of L,

then we will say ring extension. Then the bigger one, 
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let us stick to the field 
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extension here because that is what we are going to use more often, 

L is a bigger field than L, so typical example of this kind are ℚ  contained in ℝ  
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or ℝ  contained in ℂ  
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or ℚ  contained in ℂ ; these are the typical examples 
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of this kind.

And that is what one of our requirements today that I want to extend the field so that the

given polynomial has zeroes in the bigger field, all zeroes in fact. I want to extend the field in

such a way that a given polynomial in K X has a all-zeroes in the bigger field. It may not

have zeroes in L. 

So in any case when you have such a field extension, then the upper one L is a K-algebra. So

remember to give a K-algebra 
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you need a ring which already, L is a ring, in fact L is a field. So in this case also it is fine. 



(Refer Slide Time 24:24)

So L is a ring and you need a scalar multiplication of K on L, but then you can just restrict

that multiplication of L.

So take 
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any a in K and take any x in L and map it to a x if you are multiplying these elements 
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are in L because the multiplication in 
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the ring here is same as whether you take, and consider them as elements here or, or elements

of K. So this is a scalar multiplication and with this scalar multiplication, this L becomes K-

algebra.

Ok, now one more example, we will just say it. So a ring can be, a ring R can be K-algebra in

many ways. We will see these 
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kind of examples when, in the assignments. So the, this means the scalar multiplication of the

ring, of K on the ring R are, may be different, Ok. 

So we have seen now ring homomorphism. We have seen K-algebras. One more important

class of K-algebra I want to give is, Oh before I go on to that I also want to recall what should

be K-algebra homomorphism. K-algebra homomorphism, it should mean 
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ring homomorphism and K-vector space homomorphism, K-linear.

So what 
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does that mean? Let me write in the notation now. Now you have 2 K-algebras R and S and a

map between them, ϕ . So 
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R and S are K-algebras 
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and ϕ  is a map between them. It is called K-algebra homomorphism 
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if it satisfies, first of all phi should be ring homomorphism. 

And 
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now we know that, because they are K-algebras they are K-vector spaces. And therefore it

makes sense to talk about K-vector space homomorphism or K-linear map. That means phi

should  satisfy  this  property,  ϕ(a x+b y )=aϕ(x )+bϕ( y )  for  all  a ,b∈K  and

x , y∈R . 
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Such a thing is called a K-algebra homomorphism. 

So any ring homomorphism is a  ℤ -algebra homomorphism. So example, because there

we do not have to check nothing, it is only one. So any ring homomorphism is a  ℤ -

algebra homomorphism. This is immediate from the 
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definitions. So recall that what we have done in these few minutes is that we have recalled the

definition of ring 
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homomorphism. 

We have also defined what are K-algebras and we have also defined what is a K-algebra

homomorphisms and in the next, after the break I will continue with more examples which

would lead to the concept of algebraic elements. We will continue after break. Thank you.


