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Lecture 10
Gauss’s Theorem (Uniqueness of factorization) 

Let us continue discussion about the polynomials, we have seen in the last part that if you

want to list all prime polynomials (in) with real coefficients then they are only two kinds one

is linear one and the other is a polynomials which are degree 2 and their discriminant should

be negative these are the only two possibilities for a prime polynomial in real numbers.
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Now let us try to do this thing similarly for what about field ℚ  what about ℚ [ X ]  ? I want

to find the possibility for two things, number one whether is there any given any degree n,

given n any natural number I want to produce polynomial F with rational coefficients which

is prime and the degree is n, n positive. So this will show that in contrast to the real numbers

here polynomials can be of arbitrary degree, there are prime polynomials of arbitrary degree.

So first let us this is what I want to show. So first let us consider the polynomial of course

you can write down many polynomials of degree linear ones of course exist there are many

linear polynomials which are prime and many quadratic also degree 2 also for example X

square minus 2 or more generally X square minus p they are all degree 2 polynomials these

are as p varies in prime numbers these are all degree 2 and they are prime polynomials over

ℚ   in  ℚ [ X ]   prime  in  ℚ [ X ]  simply  because  we  know what  are  the  zeros  of  these



polynomials in complex numbers, zeros of this polynomial for example  V ℂ ( X 2
− p )  this is

square root of p with a plus sign or minus sign, these are the zeros - p here no (plus p) root p

plus p and square root can have two signs either plus or minus.

It is better to write that as small x, where x2
 is p and (these are non so) these are non-real no

they could be real, they are non-rational complex numbers. So therefore none of them is in

Vℚ  of this polynomial is empty set. So it does not have a linear factor, so therefore they are

prime polynomials. 
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Now at least one cubic polynomial and just a method and then I will write down the formal

criterion, how do you test rational polynomials are prime or not? So first let us look at the

polynomial F equal to  X 3
+4 X+2  this is a polynomial with rational coefficients, actually

this polynomial has an integer coefficients and I want to analyse whether F is reducible or

not. So if F is reducible the only possibility is it has linear all the 3 linear factors or one linear

and one quadratic these are the only two possibilities.

So only possibility for F to be reducible are F is a product of linear product of 3 linear factors

or product of a linear and a quadratic factor or in both the cases the linear as we have seen

factors corresponds to the rational zero,  so in both the cases one linear factor is there or

equivalently F has a rational zero, again that means in our notation  Vℚ (F)   is non-empty

that is equivalent to saying that F is reducible. So when can F be reducible negation of that,

so F is reducible if and only if Vℚ (F)  is empty set. 
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So in other words if degree of F is 3 and F is in ℚ [ X ] . Then F is irreducible if and only if

V ℚ(F)  is empty set. So to test whether the given polynomial X 3
+4 X+2  I want if I want to

check it is reducible I should check whether this is empty set or not and how do I check that?

So that is in general it is easy to see that the only possibility for a zero to be ±1  and ±2

are not zeros of this F.

Note that + 1,− 1,+2,− 2  they are not zeros of F in ℚ . Let us test that, that is I just have to

plug it in X equal to 1 then this is 1 + 4 + 2, so a positive thing will not work clearly, if you

have put -1 this is -1-4+2 is -3 is not 0, so this we have checked. Similarly this we checked

that plugging X=2 don’t give a zero and how do I know that I only have to test this that is

because look at the constant term, the constant terms factors are plus 1 minus 1, plus 2 minus

2.

So in general if somebody has a zero that is speciality about ℚ , then these are the only two

this will become clear when I write more general statement soon and the earlier statement

that if I have a degree 3 polynomial over ℚ  then we know that it is irreducible if and only if

this at least one no zero in ℚ  this statement is true for any field because degree 3 polynomial

how can it factor over any field? That either one factor is linear and one factor is quadratic or

3 linear factors, in any case one linear factor occurs for arbitrary field, so this statement is for

arbitrary field, the I only thing I use rational numbers here that it is enough to test that the



divisors of the constant term with integers integer divisors of the constant term should not be

zero of that F then F will be irreducible over ℚ .

Okay, so in general you have realized that in general  it  is not easy to test  even for  ℚ ,

whether the polynomial is irreducible or not.
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So now I am working now we are we want to check whether we can give some better way to

test rational polynomials are reducible or not? So I am preparing for that now. For example

you start with the polynomial F in ℚ [ X ]  and let us assume F is non-zero. Now the first step

is you write this F as take out the common denomenator see F has rational coefficients so

each  coefficient  has  canonical  representation  that  is  a  integer  by  integer.  So  from each

coefficient I am going to make the common denominator by supplying up and down by in

multiplying the so I will write this as 1 by ℚ  F tilde, where this ℚ  is a non-zero integer and

F tilde is actually has integer coefficients because 1 by ℚ  is a common denominator. 

So if I want to decide about reducibility or irreducibility of F in ℚ [ X ]   it is enough to decide

for F tilde. So F is prime in ℚ [ X ]   if and only if (F tilde is prime in ℚ [ X ] ) F tilde is prime

in ℤ [X ]  because now F tilde is a polynomial with integer coefficients. So more over I will

also assume that all the coefficients of F tilde they may have some common factor, so we

may also assume gcd of coefficients  of  F tilde  is  1  remember  gcd when we say gcd of

integers it is always a positive integer. So gcd of the coefficient so such the gcd is also called

the content sometimes but I will not use it now until sometime.
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So therefore without loss we want to find a criterion for integer polynomials to be irreducible

and for that I can also assume it is not necessary but I can also assume the polynomials are

monic, but I will not do so. So page number 5, so this is the very important lemma this lemma

is  important  for  this,  so  I  have  two  polynomials  G  and  H,  so  G  is  written  as

b0+b 1 X + ...+ bm X m

 and H is c 0+c 1 X + ...+ c n X n

 these are two polynomials in ℤ [X ]  and

I want to call their product is F=GH .

So by definition F is reducible, G and H are proper factors if (m and n are not) m and n are at

least 1, okay. So this product I have written it as a0+a1 X+ ...+am+n X
m+n , so G is of degree

m, H is of degree n and then F is of degree m+n . Okay, for a prime number p suppose that

p divides these coefficients upto some place p divides b0 ,..., p divides br−1  and p does

not divide the next one br , where r is in between 0 and m−1 .

Similarly for c’s that is p divides  c0 ,  p divides  cs−1  and p does not divides  cs ,

0⩽s⩽n−1 . You start looking at the coefficients the moment it does not divides p does

not divides that stop there, earlier all coefficients are divisible by p, similarly here okay then

if that is the case then what is the statement? Then p divides the coefficients p divides a0

upto ar+ s−1 , but p does not divide the next one ar+ s  let us proof this, this is very useful

fact. See p divides upto some place, p does not, p divides upto some place, p does not divide,

then the same thing here happens.



(Refer Slide Time: 17:38) 

Okay, let us proof this and then we will deduce the consequences. So let us compute the

coefficient I want to write down a formula for  a j . So take any coefficient  a j , so for

proof if j is smaller than r+s  then what is a j ? a j  is b0 c j+b1c j−1+...+br−1 c j−r+1

and then I cannot go on to the so the next one is br c j−r+...+b j c0  I can go on upto I can

descend the index of c to 0, the index of c is descending and index of b is increasing so this is

a j . 

So in this p divides b0 , p divides b1 , p divides br−1 , so this sum is divisible by p,

this sum p divides p divides this sum. Similarly now I do not look at b's I look at c’s ( c0 ) p

divides c0 , p divides c1 , p divides c of this one because this one is j−r  is smaller



than s because of this  j−r  is smaller than s, so therefore this sum p divides this so all

together p divides this, so that proves the first part all this p all this p divides all these guys

that is what we proved. So what we have proved is p divides a0  to ar+ s−1 .

Now  I  have  to  show  that  p  does  not  divide  the  r+s  the  next  one,  so  what  is  that

coefficient? So just write  ar+ s  this will be again b0 c j and now it will go on till  br

what will  be the coefficient  of  br ? That will  be c should and plus  br+1 cs−1  and it

descend, so this is br+s c0 . See this term is extra and all these terms are divisible by p, this

is also divisible by p, p divides and this one? p neither divides br  nor p divides cs . So

therefore because p is prime p does not divide br c s  because since p is prime, therefore p

cannot divide that proves p does not divide ar+ s , that is what it proves the lemma.
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So remember this (we will) I will immediately use it to proof some nice things. So this is

Lemma of Gauss, okay we have polynomial F in ℤ[X ]  integer coefficients, F is non-zero

and suppose of  course suppose F is  of  the form G times H with G and H non-constant

polynomials with rational coefficients G and H are rational coefficients and F is this, then F

has such a decomposition in ℤ[X ]  also.

So that means so in particular if F is reducible in ℚ[X ]  , then it is reducible in ℤ[X ]

also, okay and proof I will just say easy to verify that will saving couple of minutes. So this is

where you are using very important property of ring of integers which says that the ring of

integers has that fundamental theorem of arithmetic that is that in the modern language it is

said that the ring of integers is a unique factorization domain that means factorization exist,

factorization into prime numbers exist and it is unique essentially unique upto order.

So such a theorem is called fundamental theorem of arithmetic, so arithmetic we are calling it

because we were the school days arithmetic was done with the integers only and rational

numbers. Now as we go to college and when we start studying integral domain then one calls

them  as  a  unique  factorization  domain  that  means  it  is  an  integral  domain  where  the

corresponding  property  holds  and  this  fundamental  theorem  of  arithmetic  or  prime

decomposition of the polynomial K X that is the corresponding theorem. 
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So the continuing that now I want to state very important lemma which is used very very

often that is called (the little) so to produce or to check given polynomial in  ℚ[X ]   is

reducible  or  not,  the  following  lemma  is  very  very  useful  used  very  often  Lemma  of

Eisenstein,  what  does  it  say?  It  says  that  suppose  I  have  polynomial

F=a0+a1 X+ ...+ak X
k  this is degree k polynomial in integers and p be a prime number so

I should have said let this and p be a prime number such that p divides a 0 upto p divides

ak−1  the leading coefficient is a k, so p does not divide  ak , p divides all other but p

does not divide the leading coefficient of F.

And in  addition  to  this  p  square  should not  divide  a  0.  Then F is  prime polynomial  in

ℚ[X ]  . So before I proof this proof is very easy, before I proof this I just have to say that

immediate  corollary  is  if  I  take  any  Xn
−p ,  p  prime,  these  polynomials  are  prime  in

ℚ[X ]  , simply because the leading term is 1, so I can take this p does not divide the

leading term leading coefficient and the constant term is divisible by p, but not p^2 therefore

we can apply Eisenstein criterion and say this polynomial is prime in ℚ[X ]  , not only one

prime we can take two at a time because then I can choose any you can apply Eisenstein

lemma to either p or ℚ  we can choose and nothing special about two, we can go on till

Xn
−p1 ... pr .

So for example X3
−6 , or  X8

−30  these polynomials are prime in ℚ[X ]   because

here I took 2 into 3 into 5 these are prime number, here 2 into 3 and so on. So this will give

lots of examples of prime polynomials in ℚ[X ] . 
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Now just let us finish the proof. So proof of that actually okay so the proof is essentially what

we have done it in earlier case that if it factors then write down the equations and then you

will realize that you will get a contradiction or you can also do it. So you write down and then

check all coefficients are not divisible by p and then again choose r and s like earlier lemma.

So I would just say easy to write down the proof easy to verify.

Please do this, now just last couple of minutes I will make some remarks about a finite field

so let me write this as an example. So let F be a finite field with q elements we have not

proved such a construction but we will do it next time we will do it sometime. So now I want

to count the number of polynomials of degree 2 in F [X ]  which are not prime in F [X ] .



So how do I count that? Because it is degree 2 how can and let us say number of monic

polynomials. 

So how can a degree 2 monic polynomial will not be prime? The only possibility is it splits

into two linear factors linear factors may be repeated or non-repeated, so that is only it can

happen when (X is of the) F is of the type (X−c)(X−d ) , where c and d are two elements

in F and we just have to count them, how many?

So that means c and d varying in F, so we have to choose two elements so they are how

many? They are they can be repeated so they are precisely (q+1)C2 , they are precisely so

many polynomials because I am counting repeated also and how many monic polynomials

are there all together? All together there are q2  monic polynomials, q2  is the number of

monic degree 2 polynomials in F [X ]  because monic so the degree X square coefficient is

1 and now only we have to count the coefficient of X and coefficient of constant term. 

So there are two positions and in field they are setQ elements therefore we will have setQ

square elements. So how many will be prime among them? These are the non-primes and the

primes will be therefore the difference.
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So the difference so what we know therefore is therefore there are exactly  q2
−(q+1)C2

there are exactly so many prime polynomials monic is included you know definition, prime

polynomials in (K[X]) F[X] of degree 2 and what is this number? This number is nothing but



qC2 , so what did we checked? We actually found out how many prime polynomials are

there of degree 2 in F[X] in a finite field with q elements.

So in particular, K is not algebraically closed because if it  were algebraically closed then

there will be only linear polynomials, but these are the number of polynomials which are

prime polynomials and this number is at least 1. So the only prime polynomial have degree 2

in  ℤ2[X ]  it is  X2
+X+1  because q is 2 in that case,  qC2  is 1 so this is the only

prime polynomial. 

If I take ℤp , then there will be more and then you can list them, this information is very

very useful when you are applying these things to the practical use like designing bank cards

and ATM cards and pins and so on. So that we will deal it sometime (in the) when we deal

with concrete applications to summarize this lecture in the last we have given examples of

fields which are non-algebraically closed that means there are polynomials which are not they

are polynomials which are not linear ones and they are prime polynomials. 

And we have explicitly given examples of such polynomials over many fields like rational

numbers, real numbers and finite fields, whereas the only field which we have stated to be

algebraically closed is the field of complex numbers and this theorem I will prove it in the

coming lectures and also give a general construction of an algebraically closure of a field, so

this will also be in the coming lectures, thank you very much we will continue in the next

time.


