
Lecture No. 58

Fractionary Ideals and Dedekind Domains



Gyanam Paramam Dhyeyam: Knowledge is Supreme.

Okay, so now the theorem I want to prove about Dedekind Domains is the following. We will go little 
bit backwards. So this is the theorem I want to prove. This will characterize and this will also. Yeah, is
the characterization of Dedekind Domains, so let A be a noetherian integral domain in the following 
or equivalent. One, A is DD, Dedekind Domain, that is normal of dimension less equal to 1. Two, AP, 
every localization, A localized P is a DVR for every non-zero prime ideal. And third, these are the 
new terms, every factionary ideal of A is indivertible. So I will define these terms. And then we will 
prove the equivalence of this. And as a corollary we will deduce the theorem that I mentioned that 
every ideal is a product of prime ideals. You know, essentially in [02:40 inaudible] in a Dedekind 
Domain.

Okay, so let us [02:44 inaudible] a little bit about Fractionary Ideals and Invertible Ideals. So 
Fractionary Ideals and Invertible Ideals. So we will assume always A is an integral domain and K is its
coefficient field. So we have K here, we have A here. Fractionary Ideal means, so this should 
correspond to the fractions in the usual integers. So that means they are elements of, and fractions are 
elements. So fraction is ideals, it should be the ideals corresponding to the fractions, right. So, 
fractionary A ideal means, fractionary ideal in A is a non-zeros of module, A sub-module of K which 
has a common denominator which has a common denominator. That simply means that is, it's a sub-
module. I keep writing a, this is not an ideal. 

So it's a sub-module of K and it has a common denominator means, if I multiply by that it should goes
inside A. So there exit d, non-zero. d in A, d non-zero with d times this [05:15] a is contained in A 
actually. So that means this d times a is actually an ideal in A. So this A is may not be an ideal, it's a 
sub-module of K, but if I multiply by 1, non-zero element it becomes an ideal [05:34 inaudible]. So 
this is ideal in A. 
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All right. So that is a fractionary ideal. Now there is, look at [05:46 inaudible] properties of the 
fractionary ideals. First of all, if A is a fraction, so I will introduce a notation fraction, ideals usually 
denoted by F of A, this is a set of all fractionary ideals in A. All right. So obviously the principle, the 
sub-module of K generated by one element there obviously fractionary ideal because that denominator
really the denominator. Also the ideal, the sub-module A, A sub-module A is also fractionary. So A is 
an element here, also the principle sub-module, the cyclic sub-modules, a by b. This is also 
fractionary because this b is a really denominator.

More generally if I have two fractionary ideals a and b then their product is also fractionary ideal. a 
times b is also fractionary ideal. A times B makes n because everything is happening in the field K, so 
the product is the, see, normally you cannot multiply two sub-module, a two modules. But these are 
very special module that contained in K. So if d is a common denominator of A, d prime is a common 
denominator of B then d times, d prime will be common denominator of the product. Okay, so the 
product. Okay, so therefore this one, this F(A) with the product, this becomes semi-group. Semi-group
simply means that this product operation and it is associative. But it is more than a semi-group, it also 
have the identity element, namely A is an identity element. So this is indeed a monoid under 
multiplication. A is an identity element or it is a neutral element. 

So whenever we have a monoid we look at the elements in that monoid which are invertible. So those 
guys are called invertible ideals. So the name also is very clear. So and fractionary ideal in F(A) is 
called invertible if a is invertible in the monoid F(A) under multiplication. So what does that means, 
so that is there exist an element b here, so that the product is a, so that is their exit. Another 
fractionary ideal b in F(A) with a times b equal to A also it is b times a. And such a 'b" will be unique 
then and that unique is denoted by a inverse. So that b is unique denoted by a inverse. 



So we want to guess who is this b in terms of a and that will be, so for example, if your fractionary 
ideal where principle generated by x, let me call it. Suppose this has a principle fractionary ideal. 
Then who will be the inverse of A, then obviously a inverse will be generated by x inverse. x inverse 
make [10:49 inaudible] this x is a non-zero element. So a, the zero ideal cannot be fractionary ideal.
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So therefore this is the, so you want to guess a will be the inverse, so obviously, so we have given this 
a fractionary ideal. So note that, so we want somebody whose product with that is equal to A. So look 
at this colon operation, (A:a), this is what, this is by definition, all those elements in the coefficient 
field, this is happening in the coefficient field, because A is a sub-module of Q, so all those elements 
in the field such that when I multiply by this ideal will get inside A. 

So x times a is contained in A. This is the colon ideal. So first of all note that this is again fractionary. 
So to say that it is again fractionary, what we have to show, it also has a common denominator. So 
give a common denominator of "a". We want to find a common denominator for this. So that is, 
suppose you have given d which is a common denominator for A, that means, d times a is contained in
A. So suppose if for some d in A is, then what does it means? So that means, this d will belong to this 
colon ideal and then this is non-zero in particular this colon ideal is non-zero because d is there. Now 
element of A [13:05 inaudible] it is a common denominator for this colon ideal. 

Then and every non-zero element a in A is common denominator for this. That means, what should I 
check? That this A times a colon ideal should be contained in A but that is obvious. So therefore, 
every non-zero element is a common denominator. So what did we proved? We proved that assuming 
A fractionary ideal, this colon ideal is also a fractionary ideal. So it is, so we have proved that if a is a 
fractionary ideal then colon A is also a fractionary ideal. So obviously we want to now check that this 
guy is the right inverse. This A colon, [14:18 inaudible] ideal, this A colon [14:19 inaudible] a, this is 



the inverse of this. This is what we would like to check. Because this is a candidate and also the 
product is contained in A, so therefore we will prove the following lemma. 

All right. So for fractionary ideal the following are equivalent. One, a is invertible. So just to 
remember that, that is F(A), A belongs to F(A) cross A. Remember that was our standard notation to 
denote units in a monoid in general. This one, two is this gothic a times the colon A, this product is 
actually equal to A. If you prove this then this has to be the inverse of this because the operation is 
commutative, so this will also become equal to this or you can use, instead of a you can replace this a 
by the colon ideal a and then it is the colon of colon A colon a will be a. So this two, three is. So what 
does this mean, this equality should mean what? This product is A that means, one should be a 
combination of this. So there exit some elements, x1 to xr in the gothic a and y1 to yr in colon with 
the product x1y1 plus, plus, plus xr yr equal to 1.
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So further, just to summarize of this three and then we will prove all the equivalent. So further, if any 
one of one, two, three holds then a inverse equal to A colon a and a is generated as a module by this 
x1 to xr and inverse is generated by y1 to yr. This is generated by y1 to yr. So proof, we will prove 
one implies, two implies, three implies one. All right, so one means it's invertible. And two means, A 
times the colon, A colon gothic a is equal to a. So a is invertible given, suppose a is invertible in F(A) 
that means, there is a inverse there, so that is, there exit a inverse in F(A) with a times a inverse equal 
to A. The other equality, we don't have to write because we are in a commutative case. 

But this means what, this will mean, if we want to rewrite this or this you will have to related this a 
inverse with the colon. So in a colon notation this means, a inverse is contained in the A colon a. So 
therefore, look at A which is a a inverse. This is the definition of the inverse and now I am going to 
replace this with this containment. So this is contained in a, contained in A colon a which contained in



A, so a is contained in A, so are equalities and therefore we have done. So all equalities and hence that
proves true. [20:06 inaudible] early this equality. 

Okay, two implies three, this is proved, two implies three. We have given that a times A gothic a colon
is equal to A. That is given to us and from here we want to conclude that. What do we want to 
conclude? We want to conclude, there exit elements x1 to xr are here, y1 to yr are here which is 1. But
that is [20:39 inaudible] because this product of these sub-modules is, so one belong there, so one is a 
combination of the product. So, three is, this is trivial. Three implies one, so this we have proved. 
Three implies one, three, what is given? We have given that there are elements x1 to xr in A and y1 to 
yr in A colon gothic a with the x1 y1 et cetera, xr yr equal to 1, then we want to prove A is invertible. 

So look at the colon, a times A colon a, this we know it is contained here by definition of this colon. 
So therefore this is an ideal in A because it's a sub-module contained inside A. So it's an ideal, so 
therefore and also we have given that there is x1 to xr. Three says, we have x1 to xr in a and y1 to yr 
in this colon, such that there this sums of the products. This is one, that is give in three to us. 
Therefore this sub-module, this ideal will contain 1. So 1 belongs to a colon A, a. So we have an ideal 
where 1 belongs, so therefore, that ideal [22:35 inaudible] will be the unit ideal which is the [22:37 
inaudible]. So that proves this is equal to A. So that proves that A is invertible and this is the inverse 
of a, and the remaining thing is, it's clear.
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For that statement it just re-organization, so that proves three implies one. All right, so let me deduce 
you consequences from here for the future views. So corollary 1, so remember this F(A) is the set of 
all fractionary ideals and we have taken an a here. We have characterized when will this sub-module 
of K has a inverse and the condition three say that in particularly finitely generated. Finitely 
generated, because you see the third this moreover part, further part says, if a has inverse then it is 
finitely generated by those x1 to xr. So therefore what we have proved that I want to know to 
corollary every fractionary ideal which is invertible is finitely generated. So an invertible fractionary 



ideal in A is finitely generated. See there are many fractionary ideals which are not invertible in 
general.

All right. Next, another corollary which we will use that, let (A, m) noetherian local domain then A is 
a DVR if and only if m is invertible, m belongs to F(A) cross, that is, m is invertible in F(A). So let's 
prove this. So proof. So, this show that we don't have to check, even if you check only the maximal 
ideal is invertible then from there only you can conclude it's a DVR. Okay, so first we prove this way, 
assume it is a DVR, then I want to prove m is invertible. If it is a DVR, then the maximal is principle. 
But the principle ideals are invertible. Inverse is generated by the inverse of the generator.

So A DVR, first of all A DVR that will imply m is non-zero and principle A times a and therefore m 
inverse will be actually A a inverse. so this is easy. Now this way, we want to check it is a DVR, given
that (A, m) is invertible. What does that mean? That means conversely, suppose that m is invertible. 
So by the earlier lemma that means what? That means there are elements here, r elements, so there 
exit by lemma x1 to xr in m and y1 to yr in m inverse with x1 y1 plus, plus, plus xr yr equal to 1. But 
note that this xi times yi, this is in A for all i, because x1 is m and say for example, x1 is m and y1 is 
in m inverse.

That means their product has to be go inside A. So xi yi are in A. So and we know this sum is 1, so 
that means at least one of them cannot belong to the maximal ideal. So choose, because if all these 
products belong to the maximal ideal then this sum will also belong to the maximal ideal but 1 is not 
there. So choose i such that, let's call it u which is xi yi this is not in m, but we are in a local ring. This
element u is not in m, so that will mean that u belongs to actually a unit, u is a unit. 

Now let us take any a. So let a, what do you want to prove? We want to prove A is a DVR, so that 
means we want to prove that this maximal ideal has to be generated by a non-zero element, principle 
ideal, non-zero element. So let, I am looking for a generator for m. So let us take arbitrary a in A or in 
m. Okay, now a equal to a u inverse and u inverse is, the inverse of this xi yi, so I just multiply this. 
So this inverse, this is a. But this is same as, this u inverse is, I have taken out and then u inverse a, 
and come out of this yi and then xi. Whereas this element, obviously this element, I claim that it is in 
the principle ideal generated by xi because for that I only have to check this is in a. This is in a is 
obvious because a is where, a was in m, u inverse of the unit in a, therefore this make sense in a, and 
this I multiplied by yi, but yi is an element in m inverse. 

So elements of m times elements of m inverse goes inside A. So therefore this element has gone 
inside A. So this A is a multiple of this xi. So therefore, and I have proved this for every a. So that 
means this principle ideal generated by xi is m. So it's a principle ideal, therefore A is a DVR. So A is 
a DVR. 
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All right, I think the next, we will prove the theorem next time. 


