
Lecture – 53

Regular Local Rings are UFD

GnanamParamamDhyeyam. Knowledge is supreme.

Good afternoon. We continue our study of regular local rings. And today I will prove that regular
local rings are UFD's. This is a good application of the last theorem we proved that regular local rings
can be characterized through the finiteness if the global dimension. I will assume that your familiar
with  UFD's,  except  I  will  recall  some  results  which  you  have  already  proved  and  with  some
motivation. So the first ring which is a UFD's ring of integers. And this is actually proved the time of
Euclid now and I guess the motivation was-- basically two motivations. One is, of course, the need or
solving the Diophantine equations. Right. So, for example, solving Fermat’s last theorem was also
one of the problem in the solution, et cetera. And it would have been very convenient if we have a
prime decomposition. Then if we have two prime decomposition, then you can compare and say the
exponents  are  equal  and  so  on.  So  that  was  very  important  and  also  this  actually  gives  you  a
description of a multiplicative monoid. See, if you have a ring R, ring R as a structure, it's a set with
two  binary  operations  plus  and  dot.  Right.  And  with  respective  plus  it  is  an  abelian  group,  so
cancelation, et cetera happens and everything is neatly as like the equations also solutions and so on.
With respect to the product, when it is an integral domain then I can remove zero and then it's still a
monoid. It's a multiplicate to monoid. And what would like to understand this multiplicate to monoid
in terms of the additive monoid. So for example, for ℤ, if you look at set of prime numbers then give

with the multiplicative monoid of ℤ which is (ℤ∖ {0 } ,. ). This can be described, this is a free monoid

on this P basis. So this is isomorphic too.We can write down it is the sign which is plus minus one
group under multiplication and cross N power this round bracket P. So this gives a good description
for  the  multiplicative  monoid.  If  we  want  to  understand  a  ring  better,  you  like  to  understand
multiplicative mono orbit. And this understand is done with the UFD property. 

So these are done by Euclid time and then the Gause proved this again and also noted that generally if
I have a UFD, A is a UFD, then the polynomial ring over that is also UFD. These are gauss. Gauss
actually proved it for A equal ℤ. And therefore for finitely mini variables we can repeat this argument
and we can create for the finitely mini variables. However for a power series ring it is not proved this
way.Power series ring this is little bit more tedious. And in generally it is not truth. If you have a in
generally UFD then the power series ring over a UFD may not be UFD. So this is strange, normally
for power series ring the results are better but in this particular thing the result is not so good. Okay,
so, with this now we will assume today A is our regular local ring.And we want to prove that A is a
UFD. In particular, ifI take this polynomial, if I take a power series ring over a regular local ring. A

power series X1 , ..., X n and finitely mini variables, this is also UFD. If R is a regular local, r is not a

UFD, it's more than that. See, in general this false UFD's.So this will follow because if R is regular
local then the power series ring over that is also regular local. 
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Okay, so, you will be use this the homological dimension of any module over A is either final finite
homological dimension. This is what the main ingredient. Oaky, so, we have notice that regular local
rings by definition. They're Neotherian. So, to prove UFD, we have to prove two things. Irreducible
decomposition  exist.  That  means  every  element,  every  nonzero,  every  non-zero  is  a  product  of
irreducible  elements.  And  second  part  is  uniqueness.  That  means  we  have  two  irreducible
decomposition,  then  up  to  a  permutation,  up  to  a  unit  they're  equal.  So,  because  the  ring  is
Noetherianfor every element have the irreducible decomposition is clear because sending chain of
ideals become stationary. And divisibility can be rewritten in terms of the ideal in ascending chain.So
irreducible decomposition exist, this is immediate from the Noetherianess. So we have to prove the
uniqueness. And uniqueness is well proved by proving irreducible elements are prime elements. So
this is usually proved by proving irreducible elements and prime elements. They are equivalent in this

set up or  R’. So, we will also be concentrating proving that the irreducible elements are prime or

which is equivalent to saying again that every height one prime ideals are principle. So because if you
have a high-- if we have a prime ideal,then it will have an element in that and that non unit you can
[express in a way] irreducible decomposition and therefore because aideal is prime it will contain one
of the element. And because height is one ,it has to be equal. And that will be therefore generator will
be a prime elements and that's how the proof is go. So therefore we have to concentrate on proving
every height one prime ideal in a regular local ring principle. So that is a main step. Okay, now,
before I gone, I just want to also recall you what is the definition of a prime element in general in a
ring. So, an element p in the ring A, general, not in a domain is called prime. If first of all p has to be
non-zero deviser. Normally, when assumes when you talk about this concept when I assumes were in
integral domain but you may not in generally you not be an integral domain in that case. And element
is called prime. If p a nonzero divisor and ideal generated by p is a prime ideal or equivalently if p
divides ab, a b are element in A then p∨a or p∨b. So,the theorem actually we will prove is -- this

is the theorem will prove,  ( A ,m ) regular local then A is a UFD. As you will see this proof is also



difficult  now  because  the  major  work  has  gone  into  the  earlier  theorem.  Then  homological
characterization of the regular local ring.

(Refer Slide Time: 11:00)

Okay, so, first let just note the Lemma,which I've used and this Lemma is valid for not necessary local
ring.  It  is  valid  for  any  Noetherianring.  So,  I  will  state  in  that  generality,  so  Lemma,  A  is
Noetherianand A, is an ideal, nonzero ideal. Suppose,A is projective of A-modale, and thatA has a
finite free resolutionby free modules of finite rank. This means, so that is let us fill out what does it
means, this means you have an ideal A here, we can have resolution like this. Finite, finite length,the
resolution  and  all  these  modules  are  free.  A-modulesor  finite  rank.  That  mean,  they're  finitely
generated free modules.  They have the basis of  finite cardinalities that  is what  given.  Then-- the
conclusion is then the ideal A is free of rank one.In particular, A is principle. Proof is very simple.
Let's finish off the proof. I want to show it is free of rank one, and what is given? So, let A is a
nonzero ideal and also if A is equal to a, there's nothing to prove. So we might as well assume A is a

proper ideal.  So then I can always find a prime ideal,  choose a prime ideal, choose  P’ with A is

contained in p. It's a proper ideal, it's containing some maximal ideals, in particular prime ideal. Once
it is contain there and then when I localize, now from the ring A,I go to the localization, A localize at
P. We had an ideal A here, proper ideal. Now you get aideal A, A localize at P. This will also be
proper ideal. Because A is contain in P. and now what we had given was A is a projective module. So



locally it is free, projective modules or local rings are free. So in particular this A localize at A P is a
free…
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So,A this module, this ideal is a free, A localize at P module. But this is an ideal in the local ring
which is free. Therefore,it  actually haverank one, because any two elements in ideal they will  be
linearly dependent. Therefore, if the rank is more than one it will have basis consisting of more than
one element, but that is not possible because any subset which has more than one cardinality has to be
lineally dependent. So therefore, rank of this module has to be one. Okay.And what is that we want to
prove? We wanted to prove that A is free of rank one, but locally we proved A is free of rank one.
Okay, and we have a finite free resolution.So that will tell you there exist finitely generated free A
modules F and G such that A directs some F is isomorphic to G. This you've prove it by induction on
the length of the free resolution we're given, because the module is projective, therefore,you can add
something so that it become free, but you can the other component may not be free but you can add
more and then make it free. So therefore you keep doing this. So, by adding a free module you will
get a free module. But when you localize this, the localization come within the direct sum et cetera.
So, A this direct sum F localize at P is isomorphic to G localize at P, therefore, rank of G which will
be rank of the localization. So write down, the rank of G which is rank of G localize at P,which is
from here, this is rank one, this is whatever rank. So, this is one plus rank of F F which is one plus
rank of F. So, therefore, A has to be up rank one. So that implies a rank of A is one. And it is-- once it
is rank one and it is free. And once it is freeit is principle. And the delay is free. 
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Okay, this is I will use it, I may not be use in the generality, I mean, you may use it in a even with
more special case of this Lemma which will be even more easier than proving what we have proved it
down. Now, we will start with regular local ring.They are assuming it is regular. And as we saw
enough to prove that,if we have prime module P height of P is one, then P is principle. And this I am
going to do it by induction on the ring, dimension of the ring.We will prove this by induction on d
equal to dimension A. We know dimension A finite because A is a local ring. So,let us for d equal to
one-- we have a regular local ring of dimension d, therefore this d is also same as minimal number of

generators for the maximum ideal,which is the dimension of the vector space 
m

m2 , which is also called

embedding dimension of A. Suppose d is zerothat means what? That means this vector space is zero

dimensional vector space. That means it's a zero vector space. So then 
m

m2  is zero, which means m

equal to m2. But that means m is zero by Nakayama's Lemma. But,once the maximum ideal is zero,

you are in local ring, therefore, actually A is a field, is a field and they know prime ideal, they're
nothing to prove. Okay, so, I assume now dimension is act least one and let P be a prime ideal height
p equal to one. Height P definitely contains zero, zero is a prime ideal because regular local rings are
domains. So, this is not. And because this is local ring, this P is containing the maximum ideal m. So,

if and also we know that a d is act least one,so m cannot be m2. 



Because this d the dimension of this 
m

m2 , so it cannot be zero at a space. So, definitely I can choose, so

choose  T∈m∖m2. And we have seen that when I to more t now  
A
AT

, this ring is again regular.

Because we have gone modular part of a regular system of parameters. So, this T can always extended
to a generating set  for m, because it's  a  non-zero element in vector space always can always be

extended to a basic. So this T [ X1, ... , Xd ], this is a minimal set of generators for m. And it's about

irregular local ring again. Alright. So, therefore in particular is AT is a prime ideal? Because this is a
regular local ring, it's a integral domain, therefore AT will generate a prime ideal. This is a prime
ideal in A. And therefore it cannot be containing-- if it is containing P, then P has to be equal to height
P is one. So, if AT is containing P then PA to AT is principle. And we are finished your proof to
prove that P is principle. 

So,  we may assume T is  not  in  P.  okay,  we  have assume T is  not  in  P therefore  if  I  take this
multiplicative set S generated by T that is one T, T square et cetera. This multiplicand is said will not
interested with P. so S intersection P is empty, therefore when I go from A to S inverse A this P here
will survive here. What do I call that, okay, I just called it S inverse P. this will not be equal to S
inverse A. let's called this ring as B, so this P will be a-- this is a image of P, this is a prime ideal in B,
okay, so instead of writing I will write B and this one therefore P B. so we are in this situation like
this now, A was our original regular local ring. We have localized that at this multiplicative set, and
remember that this may not be local now, but what we know is if we have a prime ideal here that
remains prime here. Okay, and now if I want to prove P is-- okay. Our aim is to prove P is principle,
remember that. Okay. So I will prove this in three steps. So, how will I prove it? I will prove it like
that. Step one, I will first prove that this ideal PB is a projective B module. Alright.So, to prove
somebody that projective B module, it's enough to prove that it is locally free. It’s a finitely generated.
Or it's enough to prove that it's locally free. So enough to prove that PB is locally free.That is I have
to prove that if I localize this at any prime ideal of B it is free. So that is I have to prove that PB and
localize at P this is  free BP module for every prime ideal  P of B. but  we know the prime ideal
structure of this B, they are coming from A, those who don't intersect with S. so, therefore, this P look

like P’B where  P’, this is a prime ideal of A and don't intersect with this with P’ intersection S is

empty. Here now, all prime ideals of this B, they are coming from the prime ideals of A who don't

intersects with this. So I've taken P, I have written prime ideal of B which will be  P’, where  P’ is

actually prime ideal in A which don't intersect with S. But such a P’ cannot contain T, note that. T

cannot be contain in prime because P’ don't intersect with S and as it is generated by T. So P’ cannot

be in-- T cannot be  P’. So,  P’ cannot be M because M contains T. So, once, so, therefore,  P’ is a

prime ideal of A which is not the maximal id. That means that dimension of A localize at P’, this will

be strictly less than dimension of A. which is D. This is height of P’ and height of P’ cannot be full

dimension. Height of D is height of M. And remember we have proved that if A is regular local then

all localizations are regular local. So, therefore, a localize at  P’ is again regular local, this is by the

corollary to the earlier theorem that global dimension is finite. This you cannot directly prove from

the definition of, okay. So, and what is it? And this P, p small p A localize at P’, this is capital, this is

what we wanted to prove it is principle, right. Our aim was to prove that P is principle. But when I
prove that P is principle, I'm proving it as a localization, it is principle. So therefore, this is principle
by induction. No, I don't even want to note that. So, you look at this prime ideal this is same as P B

localize at P. so here B was S inverse of A and this P’ don't intersect with this and so whether you



localize at B localize at P and A localize at  P’ they are same. See because this  P’ is a… see you

remember this capital P was P’ B. so when I localize, further localization that is same as this. So this

prime ideal is  same as this.  So,  therefore, this is  principle by induction,  so, P A localize at  P’is

principle by induction on D. because this dimension are drop. Since dimension of A localize at P’ is

strictly smaller than D. once it is principle if is free and hence free. And hence P A localize at P’ is
free. But then this is free. And that is we wanted to prove, we wanted to prove it is locally free. So,
the-- what we proved is, therefore we've concluded that if I take this P and extended to B this is a
projective model. This is want we wanted to prove it step one.
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