
Lecture – 46

Complexes of Modules and Homology

GyanamParamamDhyeyam: Knowledge is supreme.

So, the proposition is, and this is used many, many times not only in commutative algebra but every 
subject. It’s like a machine. So, let 0→X .→Y .→Z .→0, let us say this is f and g, be an exact 
sequence of complexes. Okay. Then, the sequence, which sequence? Now, I write the sequence. So,

Hn (X . ), what does this mean? This means, when you look at this complex in nth level and nth place, 

this is homology, that means, this is kernel by image. If for some reason, if you look at this n to be 
negative side, then one should write it here. But don’t bother about it, only think at which position the 

kernel by image, that is called nth homology of this complex. Then, Hn (Y . ), and then Hn (Z . ), and 

there’s a map here which is induced by this f, so that is also denoted by Hn (f . ). We will define this,

Hn (f . ). And here, Hn (g . ). Right. So, at the next level, that means, if we chase this position from n to

n−1, then we have this also know, Hn−1 (X . ), Hn−1 (Y . ) and so on. And now, so this is Hn−1 ( f . ), 

this is Hn−1 (g . ), and this side also there is. And now, so we will define these maps and what is called 

connecting homomorphism. So, these pieces are connected by the maps here, those are called delta, 
delta n. This is called connecting homomorphisms. Okay. What do we want to define? We want to 

define this Hn (f . ), Hn (g . ), δn  so that this long exact sequence that we got is exact. That means, 

that each stage there, kernel is image is exact sequence of A-modules. And ultimately, we will 
measure the homological dimension by how long is this sequence, know, that with the major. And 
then we will define what is homological dimension of a module, and then we will characterize the 
regular local rings by looking at the supremum of the homological dimensions of the modules over 

that ring. So, right now, our problem is to define Hn (f . ), Hn (g . ), Hn (f . ) that means, similarly, we 

will define these also and the connecting homomorphism. Okay. So, how are we going to define this? 
The best is to draw a diagram. So, obviously, this is what, this is by definition, it is at nth stage, that 

means, Xn  is involved. So, this will be Xn , so the kernel will be inside Xn  and the image is

also inside Xn , so this is some sub-module of Xn  divided by some other some module of

Xn , right?
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And, where are the sub-modules are coming from? They are coming from the Kernel’s of a kernels 

and images of this f n s. Okay. So, we have come down to this level. So, 0, go to nth stage means, 

we have to read this given complexes at nth stage. So, we have, because the complexes sequence is 

exact, we have this Xn , Y n  that is f n , and then Zn  that is gn, and this is zero. And 

remember, we want to define from homology at this stage means, this Xn−1  here, Xn−2 , this is 

d, so dn , this is dn−1 . Oh, for some reason I’ve chased to the lower, it doesn’t matter. Okay. 

This is Y n−2 , this is Zn−1  and of course, this Zn−2  here. This is exact here, this is exact 

here, and maybe here also I’ll write one term, Y n+1 , this is Zn+1  to zero. This is dn ,

dn−1 . Such a thing is there, such a thing is given to us. And what are we trying to define? We are 

trying to define a map from Hn(X .) , this to Hn(Y .) . This is what we are trying to define. So 

take any element here, how do any element look like? This is, obviously, the Kernel by image. Kernel

of whom? It is this stage, right? So, here, Kernel of dn  mod Kernel of dn+1 , image of dn+1 . 

So, this is Kernel of dn divided by Kernel of dn+1 , by definition, this is by definition. Okay. So, 

take any element here. Any element here is a class, residue class of some element in the kernel dn .

So, therefore, then element I will denote by, say, what we denote it by, z  or z, or x . And we 
want to define this map, right? So, what is obvious choice? I just take this x, so that is, this is in here, 

this x is here. It’s in the Kernel of dn , in particular it is in Xn . So, it goes zero here because it’s

in the Kernel of dn . So, obviously, what do we try, that is, f n(x)  we apply f into that and take 

the bar of that. But first, you have to check that this f n  is indeed in the Kernel of this, and we’ll 

take the image there. So, this way it goes to zero , so therefore, this way it will go to zero. This way it 

goes to zero mean, this f n(x)  belongs to the Kernel of dn . So, therefore, this makes sense, 

because, this is by definition, this is the Kernel of dn  divided by image dn+1 . Dn is dnY really, 

right? So, what we observe that, this Xn  is if within the Kernel of this, then fn of that is in the 

Kernel of this, so therefore, it makes sense to talk about the residue class image of that Kernel by



dn . So that is the map. And now, we have to check that this is well defined. That means, if I the 

different representative class, then they are same there, but that is, I’ll leave it for you to check that 

this is well defined. So, similarly, you would have defined from here to Hn(Z .) . So, this is the 

easy part. And check that it is exact, means, you have to check that if somebody is the Kernel of this 
equal to the image of this. But that will again, follow from the fact that, this each part is exact, each 
layer is exact. So, from that, you check that way. But the more, little bit trick y is defining that 
connecting homomorphism.

(Refer Slide Time 11:10)

So, connecting homomorphism means, now what do we want to define? We want to define from

Hn(Z .)  to Hn−1(X .) . This is what we want to define. That means what, that means, where is 

this Hn(Z .) , that is somebody here. And from here, we want to go down to here, right? So, we 

will have to chase the diagram. So, what do we do? Okay. So, you take an element in here, that 
means, it is here, right? Here means, it is in the Kernel of this module image of this, so we have taken 
an element z here. And what are we looking for? We are looking for somebody here, we are looking 

for somebody here, then it will be in Hn−1(X .) . So, this is Kernel here. So, this is rejected, so you

choose somebody here which goes to there. Then, because it goes to zero here, that one will go to zero
here. But then, this one go to zero here, that mean, that image here is going to zero here, that means, 
that image here is coming from somebody here. And that is the required pre-image we took, right? Z 
is coming from here y, this y goes to zero here, so therefore, that is the image y here which is, let’s 

call it y’ , that goes to zero here. But this is exact, so therefore, this y’  will come from here. 

And that is x’ . Now you check that this x’  is in the Kernel of this. But that, to check that, 
again, you chase it, what do you want to do it, and then you take the image of that, and that is the 

required map. So, this one z  going that x’ . And we have check several things that all these 
definitions, they don’t depend on the pre-image of the-- We are choosing x, we are taking the pre-



image of z but it may have many pre-images. Okay. I will define that, then we have to check that this 
resulting long sequence is exact, this resulting thing is exact. That is also we can diagram chasing, 
because we want to prove at this stage, Kernel equal to image, and so that is also, then you take an 
element here goes to Kernel and prove that it is coming from here, so that you have to chase that 
diagram. That is called diagram chasing. Okay. So, that is complexes, okay. Okay, now, and again, if 
you have—So, the functoriality. Okay. So, let us first give some examples of functors. So, what is a 
functor? A functor is the analog of the function in set theory or a map in set theory, so that is set to 
set. Now, we don’t have set, we have a category. The category has objects and morphisms. So, c is 
one category, and c prime is another category. And then, we are looking for some associations. Now, 
this association should compatible with the objects as well as morphisms. So, first of all, so this is 
usually denoted by script letter’s f, f for functor. So, each object here, suppose XA is, not A, V is one, 
think of this as modules category. So, I will denote object by V, W et cetera. So, if V is one object 

here, it should associate object in this c prime, so that is f (V ) . So, this is the association, in such a

way that whenever I have a morphism here, the corresponding thing, corresponding objects which are 
associated under f, so they will have morphism between them. The question is, whether direction is 
kept or direction is reverse, and both the things are possible. So, if the direction is kept, that is called 
covariant. We will see an example. And if the direction is reverse, it is contravariant. And in such way
that if I have a composition, then we have the composition whether you take a composition before and
then apply f or apply f and take the composition, this is all should be same. So that is, all this together 
is f is called a functor. So, now two, three examples we will see. So, examples, concrete examples, so 
you take our category A-modules and the category of sets, let us take, where the objects are sets and 
the morphisms are maps. Here, the objects are modules, A-modules, and the morphisms are A-module
homomorphisms. And I have functor here, namely f, namely this is a forgetful functor. You take a 
module and forget that it has A-module structure, think of it as a set only. So, this is associated to that.
And then, when we have a module homomorphism, you forget that it’s a module homomorphism, it’s 
a map also. So this is true from any category to the category of sets where the objects were sets. Or 
you could have also done category of A-module to category of abelian groups. You forget the module 
structure but keep the abelian group structure, right? So, that’s it. And note that all these examples are 
under covariant because the direction of the morphism is not changing.
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Whereas, now one example we’re seeing, now category of rings, commutative rings. Don’t take 
arbitrary rings, commutative rings. So, this is a category so that morphisms are ring homomorphisms. 
And note that ring homomorphisms for us, ring homomorphism means. It should carry identity 
element to identity element. That is not automatic, and many books don’t assume this, but do assume 
under ring morphism one will show one. From here, we have defined a functor from this category to 
the category of topological spaces, and this was Spec. Any ring A map to Spec of A. Remember, the 
spec A is topological space with the Zariski topology. The prime ideal, set of all prime ideals, and 
there we have put a topology on that, and with that topology, this spectrum is a topological space, and 

the close sets were the V (A) s. These are the close sets. This V ( f )  is by definition, all those 

prime ideals p such that A is contain in p. And then, we have seen that, or you have seen in other 
courses that this collection forms, they satisfy properties of the closed sets in a topological space. And
therefore, it is a topology, that topology is called Zariski topology. Now here, we have also seen that 
if we have ring homomorphism from A to B, then the map on the spectrum level is the other direction,
because, how do you define it? You take a prime ideal q in B and then contract it, q intersection A, 
this is the math. So, the direction changes. And we have not checked in our course, but you would 
have done or maybe it’s easier to check that if this is continuous map, this is continuous. If you take a 
Zariski topology here, the Zariski topology, then this is continuous from. So, this way, the gain is, we 
are going to study these rings, and sometimes, compare it here, the spectrum. For example, if you 
want to prove two rings are isomorphic or not. If they are isomorphic, then the corresponding 
topological spaces will be homeomorphic. So, for some reason, if you have information that one ring 
has only one prime ideal and the other ring has two prime ideals or more, share only the cardinalities, 
then they cannot be homeomorphic, therefore, the rings cannot be isomorphic. Like that. And also, 
you might have studied another functor which is also very useful, that is, from the topological spaces 
to groups, category of groups. So there is a nice functor called ϕ1 , so in topological space x, you 

attach a group called first fundamental group ϕ one, the first fundamental group that is defined by 
using homotopy et cetera. And then, that is group but unfortunately, it may not be abelian group and 
so on, so that is usually one gets information. For example, if you want to prove some topological 



spaces are homeomorphic or not, this ϕ  one is used. And not only ϕ1 but there is a bunch of

ϕn s, they are a lot of functor.
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This study became more and more, in the late 20th century more and more common. Okay. So, another
important functor for us, there are two funtors and probably, you would have studied their properties. 
Now, get back to our, A is our fixed commutative ring, and we have the category of A-modules. This 
is a functor from category of A-modules to category A-modules. So that means what? Given a 
module, I want to associate a new module. So, for example, I would have fix a module, some fix W, 

fix A-module, then you can do it HomA(V ,W ) . So, this obviously, W is fix and this V is 

varying, right? So, this functor is denoted by HomA(−,W ) . Or why did you prefer one, so you 

could have also done the other way. So, W going to, now I’m varying W, same HomA(V ,W ) , 

Hom, this is, we are fixing the first module V and the other is varying. Now, I don’t know whether 
you have studied this, whether the home is, what kind of functor it is, right exact, left exact, covariant,
contravariant. Or that this, you have done this in your earlier courses? So I will assume that you know 
about the Hom functors. So, Hom functors. Also, we could have also done the tensor functors, so the 
tensor products. So, similarly, you can think, you can fix one module and vary the other one, right? 
So, the functors this tensor over A to W or V tensor over A-. These are the functors from same 
category to same category. And the good thing about the tensor functors are, they are isomorphic 
because they don’t change. So, this is better and that’s it.
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Okay, now with this, also you have noted that, when do you say a functor is exact? When it carries 
exact sequences to the exact sequences. So, f is called exact if whenever you have exact sequence

V ’ , V, V ‘’  is exact, that should imply f (V ’) , f (V ) , f (V ‘’)  is exact. And I’m 

saying this f is from our situation A-mod to A-mod, category of A-modules. Only this is f prime, this 

is f, this is f of f ’ , this is f of f. So, that’s it. Now, we have seen that this HomA(V ,−) , this is 

the functor from A-modules to A-modules. Is it covariant or contravariant? This is covariant, right? 

Because it map W to this, and if you have a map from W to W ’ , you should have a map from--
And, what is this map? This map is you take a morphism f from V to W and then compose with this, 
so you will get in the same direction. So, this is covariant. And we have seen that this is may not be 
exact, this is not an exact functor, but it is which exact? Left exact. So, when do you say a functor is 
left exact, that means, only if you have s short exact sequence, then the exact names will be written 
only at the left side, therefore, it is called a left exact. This is more general definition, more general 
vocabulary there in homological algebra, but we don’t need it. So, now the question is, when is it 
exact? When is this functor exact? So that will give a condition on V, for what condition on V there so

that this functor is exact. Similarly, the other one, HomA(−,W ) , this is now contravariant, 

because it will reverse the arrow. So, this is contravariant. Actually, the study will be similar, know, 
one will be the doable of the other.
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So, now I will define an A-module. So, definition. An A-module P, for an A-module, for an A-module

P the following are equivalent. So, one of them is HomA(P ,−) , this is an exact functor. Two, 

when we have a diagram like this, V to V ‘’  to zero, that means this rejective map. So, this is ϕ

, and if you have given a map P to this f, we should be able to lift it. So, given ϕ , so rejective, and 

f A-module homomorphisms, there exist f  here. From P to V A-module homomorphism such that 

this composition is f. f  compose ϕ  is f. If these equivalent conditions are satisfied, then one 
call the module P to be projective. P is called projective A-module. And, please check that these two 
conditions are equivalent, that is not so difficult. You just have to say, understand when the sequence 
is functor is exact and this, so it is similar.
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