
Lecture – 44

Proof of Jacobian Criterion 

(Contd)

Gyanam Paramam Dhyeyam: Knowledge is Supreme. 

All  right,  so what  is  
m

m2? That  is  we have to understand.  So  
m

m2 ,  so this  m is  image of p  after

localization,  right?  And  this  is  m square  but  remember  image  of  p  after  localization  not  in  the
polynomial ring but in a mod , so therefore this is same as, I will write once only because it's not, this

is  pK [X ]. X means n variables, then localized p and modulo you have to go and that image of a,

right? So this is a K [X ] P. This is m, and now I have to go mod m square, that means, square of this

ideal. But when you take square of that this p square may not contain a. So you will have to add that,

right? So this means, the square of this is, square of this, so p2K [X ], localized p plus a and mod of

this. This is what we have to go mod. So when you go mod then this will get. So this is same as, allow

me to write short form for this. So I will write a short form is Pp this is p2K [X ] localized p. If you

this short form, then this is nothing but p p mod a p and we are going mod p2 p+a and mod a. This is

also same, suffix p, suffix p. I just copied it in this, notice. But this is same as Pp mod, so this will go

away, so this is p2 p+a p. This will go away, now we want to compute the dimension of this. So the

dimension of this. So you see here, p2 p if here, this is containing p2 p+a p and this is containing Pp.
And this dimension you want to come. But this is better, right? So therefore this dimension, so I will
write the dimension of as a L vector space m by m square is equal to this is what I want. This is what
we want so the dimension will be this, minus this, right? So I just writing that, that is, dimension of
Pp mod p2 p minus dimension of a localized p+ p2 p mod p2 p. I have not done anything grade. It's

only complicated. We are interested in this dimension, so I have written this dimension equal to this
dimension minus this dimension. All right, but what is this? 

So even this bigger equal to height of p, this part. You see, because where is this? This is now, in a

polynomial ring K [X1 ,... , Xm ] localized. And this ring, I know the dimension is height p. And this is

the Lemma 1 dimension, so it is actually equal to. Minus and this one is height of q, bigger equal to
you see, because this a is here containing q, containing p, so it is localized nothing is happening after
that and before that only q. so q is one of the minimal prime. So the dimension will be a, this is minus
n, so this is less equal to height. So it is this. This is clear. And when will equality will happen here?
Precisely equality will happen here, so equality here, if and only if R is regular that is because, you

see, we have noted here the dimension of 
m

m2  is bigger equal to height p minus height q. So if equality

happens here, that means, dimension of 
m

m2  is equal to dimension of R. And therefore R is regular.

Equality, if and only if R is regular. So therefore that, okay. 

So we got when is R regular, in terms of this height p and height q and equality holds here. Okay, now
therefore you only have to tie-up with the rank of the matrix. Okay, that is and I will remind you what
did we prove in Lemma 1,  and what  did we prove in Lemma 2.  Okay,  so in the Lemma 1,  we



approved the following . This was precisely contained of the Lemma, it's not exactly but it will be,
this will be the outcome of that. So this ring polynomial ring localized p. This is regular. If and only if
height of p that is the dimension. And Lemma 1 dimension that means localize that means, this should

be equal to dimension of L of pp mod p2 p. That is when, this is regular. This is only a definition.

This is what we have by Lemma 1. And Lemma 2 was rank of this matrix Jacobian 
df i
dx j

 mod p. This

rank was less equal to the dimension of, because you see, this is a q,  a p+ p
2p module p square p,

which is less equal to height q. That is what we have proved in Lemma 2. And also we have proved
equality. Here, if and only if R is regular. So equality if and only if R is regular. So that precisely what
we want. You see, here because this one is bounded by this. This one bounded, when equality holds
here, that means equality hold here and this equality holds that means, the equality hold here will
mean that R is regular. So just tie-up both these things and then you get the answer. So that proves
your A and everything. 

Now let  me just  discuss couple of examples.  So first  of  all,  I  want  to show example where this

separability issues. Okay, so example, let us take K to be the prime field ℤp and the rational function

will be non-variable. Rational function field over ℤp. Let me take only one polynomial S, this is our

ideal A. So f is the polynomial, X p−t , where p is this. All right, what I would give you also p and we

are testing at p. So p I want and also I want Q so a is ideal generated by f that is also p and that is also
q. Let us take this. Note that p is a prime ideal because f is irreducible. F is irreducible because f

doesn’t have, t doesn't have p through. So this is irreducible in ℤp (t ) [X ]. This field is not perfect, this

ℤp ( t ) because you see, if you take the p power map that t doesn’t have p through. Okay, so that is this.

So now, what is our ring A? A is 
K [X ]

⟨ f ⟩
. f is zero decibel. This is a pid, therefore this is actually a

field.  Ring is the field.  But  the field that  regular local.  And hence regular local.  Fields are local
because 0 is maximal ideal. The only ideal and this is regular local. So A is regular local, now let us
the Jacobian matrix and the rank. So but Jacobian matrix is now, df , there is only one equation so
only one matrix. So this one-cross-one matrix. And this I have to read mod p, right? But what is this?

What is first of all, 
df
dx

, I have to differentiate with respect to x that means, this is X p−1. And t is a

quantum but this is 0. Becuaes p is catalytic. So actually this is zero matrix. Zero matrix says rank, so
the rank is. The rank of this matrix rank is 0. And what is the height? Height of q? It's a principle ideal
in a polynomial ring so height is 1. So this is strictly less than 1 which is height of q. So therefore the
c part, that converse of p doesn’t hold because this is example. 
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Okay, now let us take some more examples so that one will realize that how important it is for the
calculation. Okay, let us take next example. Okay, let us take this first, remember the first that is

looping at equation f which is X1
3− X2

2. See this example. This is called a Cusp. And if you increase

the power here that will go more and more touching. For example, if you go X1
5− X2

2, this diagram

should become more close to the axis. If you go higher power it is even more. And so if you go larger
power the picture will look like this. If we get closer and closer. Okay, so we are looking at this, same
thing will happen for the other example also. I want to compute exactly how many points are singular
and which are they? So for that we'll have to compute the Jacobian matrix and the rank. So what we
are doing? So first we have to compute the Jacobian matrix. Okay, the Jacobian matrix will be the

partial derivative. So d is only one equation so it will be 
df
dX1

, 
df
dX2

. This 2, right? And then we have

to read them mod somebody. Right, the prime ideal which want to test whichever is singular or not?

So and we are working in this ring. This are fine ring. 
K [ x1 , X2 ]

⟨ f ⟩
. In many case this is one dimension.

So therefore and 0 is the prime ideal ring and the maximal ideals. There is no in between. Okay, so

this partial derivative are what? This R, this is 3 X1
2−2 X2. So we now looking for solutions so also

we want to look for. So they are only, lets also assume. It's not necessary. 

So let us take a point, testing a whether the point  (a1, a2) whether these singular or not? So when I

plug it here, it should become, the rank should become zero, right? So that means,  x2 is already 0.

This coordinate is. At this point the rank should be 0 or 1, that is only the question. At this point this



a2, and the rank is 0. Then this coordinate is 0, means, x2 is a2. And this one, if it is 0, then x1 is also

0.  Right,  and  that  is  going  to  these,  right?  So  you have  to  check all  those  things.  So  the  only

possibility is (0,0 ). Because if you take any other than (0,0 ) point, either x1 coordinate non-zero and

x2 coordinate in non-zero. Then one of them is non-zero. And therefore rank will become 1. And then

that criterion will tell you then it is regularly. Therefore the only singular point is  (0,0 ). Okay, one

more. So for example, if you take now the other example, that is x2
2− x1, x1

2
+ x1. This one. Remember

this picture was like this. Something like this. So in the picture, you can see, there is no singular point.
So the singular loop was should be empty here, right? So that also you can see it by differentiate. So

differentiate it, then what is the matrix you will land up into? Fist the differentiation with x1, that is

this. So that is minus 3 x1
2−1 that is the first entry and the next one is 2 x 2. Okay, so when you get

singular if I  take the point  (a1, a2) and if it  is singular then that means,  x2 is  a2.  Looking at the

singular point. Singular means, rank is, strictly follow. So the x2 will be a2 and then this also I want

non-zero. This also you want zero but that will get solved for x1. So the singular point x1 will be then

equal to, you shifted to that side 
1
3

 and √ 1
3

. This should be 0. See, if it is non-zero it will be non-

singular because the rank will be 1 and it will be therefore non-singular by the criterion. So in order
that the point, these point to be singular both this should vanish at this point. At this point they vanish

from x2 is a2 and this is, when I plug it x1 equal to a1 it should become 0, so that means x1 is√ 1
3

 but it

doesn't pass through that curve. So I need 3a1
2−a1 is 0, right? This means, a1

2
=

1
3

, isn't it? This go to

the minus. So it depends on the field. Even if you would have worked on complex numbers, it is
something. But then, this point will not pass through this curve because see, when you're putting .
Here you put a 2 and here you put  something this or  this,  so the only singular point  is,  nobody
singular, therefore singular loop is empty. Just check that these solution which we got by taking the
Jacobian matrix to be zero matrix that will not pass through the curve. 
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So I want to do more conceptual examples. For example, Elliptic curve. So Elliptic curve means

what? It is curve like this. X2
2−f (X ) , where f ( X ) is cube. f ( X1 )=X1

3
+a X1+b. Cubic like this. And

now, and let us assume also the characteristic of the field is not 2. This is needed because otherwise
you don't have good formulas the quadratic equations through. If we have quadratic 2 field, how do
you write zeros of the quadratic equation. So what is the Jacobian matrix here, Jacobian matrix is, is

differentiating  with  respect  to,  first  one  is  x1,  right?  So  that  is  f ’ (X1 ),  minus  and  the  second

coordinate is 2 x 2. This is Jacobian matrix.  And we are now, suppose  (a1, a2) is singular,  point

(a1, a2) is  singular  if  (a1, a2) is  singular  that  means  the  Jacobian  matrix  should  have  become 0.

Because see, we are in which ring? We are in the ring, Polynomial ring two variables (x1 , x2 ) mod this

equation. X2
2−f (X1 ), right? The dimension is one of this ring. So only possibility is that the Jacobian

matrix is (0,0 ) matrix. So when do singular point take this, that means, when plug this should become

zero that means the condition is x2 equal to a2, and a2 should be 0. Because this coordinate should be

0, characteristic is not 2, therefore a2 should be 0. And f ’ (a1 ) should also be 0. Again we are using

characteristic not 2 because it's plus and minus. So this is 0. But this condition is what? This means,
this is a cubic equation and derivative is vanishing here. So this is equivalent to saying, this means, so

that is.  (a1, a2) should also pass through this curve. So that means a2
2− f (a1 ) should be 0. This also

there. And this is 0, so a2 is 0, therefore f (a1 ) is also 0. So f (a1 ) is 0, and f ’ (a1 )=0 . also that means

the  discriminate  of  f  is  0.  Because  common roots  of  f  and  f  prime are  precisely  the.  Okay,  so

discriminate is 0, but what is discriminate? Discriminate is 4 a3
+27b2. That is the discriminate of the

cubic  equation.  So  such  a  curve  is  called  a  Elliptic  curve.  So  that  means,  you  probably  learn

somewhere that Elliptic curves are precisely  (x1 , x2 ) square cubic polynomial with a distinct zeros.



But how that is because we want a non-singularity. It's a non-singular. So what we checked is this
curve is has no singular point. So that means the curve is, non-singular. So that means, this curve

x2
2− f (x1 ) is  equal  to  0  is  non-singular  curve.  And  you  see  the  degree  of  this  polynomial,  as

polynomial in  x1 and  x2 degree is 3. So the degree of this is 3. So such curves are called Elliptic

curves. 
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There is abstract definition of Elliptic curves and then one say, that if you put them in the coordinate it
will become this one. Another example, so these are geometric example but also it is interesting to

compute. So if you look at the ring A, this is not fine algebra ℤ [√−3 ]. Question is, what is singular

looks, Sing A. That means, what are all those prime ideals P, so this is all those p such that Ap is not

regular. Like, this is one dimensional ring. So again it only. I will not complete the calculation here,

it's not so difficult but what we'll keep handy is note that this ring ℤ [1±√2 ]. So this is content here.

Why this ring important? This is precisely the normalization. This is A bar. This is the integral closure

of A in it's quotient field. What is the quotient field? Quotient field is precisely ℚ [√−3 ]. So this is

integral  quotient  that  is  not  too  difficult  to  see.  This  integral  closure,  and  we have  seen  in  one
dimensional place normal and regular is same. So this is regular actually. This is regular. It's not local
but so what might help you now, if you do beside, what is the singular lookness of A is not that A.
Euclidean domain. If you use that then you have to check your prime ideal which are singular. The
answer you'll get is the following. Sing A is precisely only one point, namely the ideal generated by 2

and 1+√−3. This check that this is prime ideal and this is the only prime ideal when you localize this

ring there it becomes an non-zero. This is not too difficult to check but it will be very handy for you if
you use this. Just I leave for you to check it. This is interesting calculation.
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