
Lecture – 41

Jacobian Matrix and its Rank

Gyanam Paramam Dhyeyam: Knowledge is supreme.

We are going to continue the proof of Jacobian criterion and for this proof I will recommend you to 
see book by Balwant Singh. The title of the book is Basic Commutative Algebra its by World 
Scientific. There it is proved much more general then what I am doing but its there in every. SO the 
basic problem is one you set up correct notation and correct definition things will become clearer. So I
will go little slowly today. So last time I was trying to do a Lemma , let us equal that, and we've not 
finished a proof yet. So the Lemma  1, which I will need for the main proof of Jacobian criterion, so 

that K field and we are working in polynomial ring K [X1 ,... , Xn]  and this are denoted by A. And

we have a prime ideal p here, p is a prime ideal in A of height M, height of p is M. Therefore by our 

dimension arguments we know that dimension 
A
p

 this is equal to the dimension of , so n minus 

height of p. The height plus dimension is equal to dimension of the ring. So this n minus m. And let us
put this number as K. So that also shows that if I take the transcendence degree of the coefficient field

of  
A
p

 over K, so transcendence degree of the coefficient field of 
A
p

 over K this is the 

dimension. So this is K. So that means if I call this L to be the coefficient field of 
A
p

 this as 

transcendence degree K or L. L over K transcendence degree is K. Okay. That means, I can also-- So, 
first let me write the statement then we will-- so this is the situation then what do I want to do. I want 

to prove two statements, a that I want to find m elements., f 1 , ... , f m∈p  such that, if I go to 

localization A p  in Ap the ideal pAp  is generated by this f1 to fm. This happens in the ring A 

localize at p. 
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That is the first part and second part B, I want to prove that if this L over K is separable then if I look 

at the partial derivate of f i  with respective to X j  and read mod p, now this is think of the other

matrix, this matrix has row are numbered by i, columns are numbered by j, so row numbers are m. So 

this m cross n matrix. What are the entries the entries are in, so this in Mm×n(
A
p

) . So this the 

matrix, again, this is matrix in L, it entering in L. So rank of this matrix that is the statement. The rank

of this matrix, 
df i
dX j

 mod  m mod p, this is prissily m. That is under the assumption re-separable.  

And let us we call separable one way to think separable is their exist a transcendence basis so that the 
algebraic part is separable. So, that is definition of separable. Arbitrary field exchange and it's called 
separable if their existing transcendence base is, so that the algebraic part of this is separable 
extension. And separable algebraic means every polynomial the minimal polynomial of every element
is separable polynomial. Separable polynomial means it has distinct zeros. No repeated zeros. No 
multiple zeros. Okay. So, proof . We are proving first we want to choose f1 to fm. So that locally they

generate p. Okay. So first of all we may assume, so I am denoting 
A
p

, this is in small letters now. 

K small x1 to xn, it’s the coefficient of the polynomial ring, so it is in small letters. And then our, this 
is the coefficient field of this is L. L is the coefficient field. So this is a coefficient field. This is

Q(
A
p

) . And there is K here. Okay. And now, this is therefore this L over K is generated by this 

small xa, so this L is capital K (x1, ... , xn) . Because it’s a coefficient of this integral domain. 

Therefore this x1, ... , xn  I can choose, so choose we may assume first the transcendence degree is 

k that we know. So, first x1, ... , xk  is a  transcendence basis of L over K, because any generating 

set of a field extension will contain a transcendence base. 
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It's like a vector space. Every generating set of a vector space contain sub-basis. The same, every 
generating set of a field extension we contain a transcendence basis. So I will renumber them and 

assume that x1, ... , xn  is a transcendence basis of L over K. All right. So, again let me draw a 

diagram, so 
A
p

 is here, L is here this K [ x1 , ... , xn] ,  and there is a L not here which is k small

x1, ... , xk , this part is algebraic now and this part is transcendence part. So that's the situation now.

This is coefficient field of 
A
p

. And now I claimed last time something and one of the trouble was, 

it was the notation et cetera was little bit clumsier. So I have to improve that. Okay. So, what is that 
claim? So take any integer L between 0 and m, remember that k+m=n . So take any l in-between 
0 and m and then I have defined a map from L not and then the polynomial variables. So, which 

variables, already L not, this x1, ... , xk  already they are algebraic independent. So they are also 

like variables. So I take the next ones. So that xk+1 ,... , xk+l . I cannot take more than m because 

otherwise it goes. So, look at this polynomial ring and from this polynomial ring to L I am defining a 
map pl. So I just have to assign where do the variables go.

So take any X i  variable, and mapped to small x i . And want to describe the image and cornel 

of this algebraic modules. That will also lead us to how to choose the polynomial to f 1 , ... , f m , so 

that p is locally generated by f 1 , ... , f m . Okay. So, the claim is a fallowing. They are three parts in 

the claim, claim is image of pl is field generated by K (x1 , ... , xk +l) . So this field I want to denote 

by Ll . That is the one part. What is the Ker of pl is generated by the polynomials f n , ... , f l . 

Their this f i  is actually, f i  belong to polynomials up to ith variable, K [X1 ,... , Xk +i ]  and 

they also belong to p, intersection p.
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These are two parts and the third part is under the assumption if L or l not is separable. So this is same
thing saying L over K is separable.  This is the algebraic part of the L over K. So if that is separable 

given then if I take the partial derivative of f i  with respect to the last x, dX k +i , this cannot 

belong to p. So that is a claim. Claim is very simple and if you do one by one I am going to prove 
claim by induction on l. 

So proof of the claim, this is by induction on l. So remember l is that, if l is 0, there is nothing to 
prove. Because what you want to prove. Let's see here, what do you want to prove. If l is 0, you want 

to prove that the image is l=0 , L0  is transcendence part. Then p is, zero and so on so it’s 

nothing to prove. Okay. So we may assume, l is bigger than 0 and already we have found a 

polynomial of l−1 , already we've obtained f 1 , ... , f l – 1  with the property we wanted. Image of

l , this one, kernel of l  is generated by f 1 , ... , f l . And their all in p. So already we have 

found this. Now I want to do the next step. Next step is what now? I want to choose one more 

polynomial. So just look at the element xk+i , this is an element in L and this one is algebraic 

power of L0 , And remember we've already have this Ll+1 .Which is by definition it was the 

image of l−1 , this is image of  ϕl−1 , remember if l−1  is a map from the polynomial ring 

over l 0, from k+1 , up to k+l−1  inside l. So this already found, so this contains L0 , so 

already this is algebraic, therefore this is algebraic, therefore this xk+l , will have a minimal 

polynomial over Ll−1 . So k+1  is algebraic over Ll−1 , so it will satisfy a minimal 

polynomial, every disable polynomial, so that I am going to denote by g. So g is by definition 

irreducible polynomial of, so some times one denote like this Irr(xk +l , Ll−1) . So this is a 

polynomial in one variable over this field. So this belongs to Ll−1  and the variable I am we are 

writing it capital xk+l . So the g evaluated at small xk+1 , l is 0, and anybody any other 

polynomial, which when you plug it in the small xk+l  it becomes 0, then g divides that, that is the 

property of the individual point. Okay. So this and this is the polynomial over Ll−1  and this is the 

image of this field map.              
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So therefore this polynomial g is will definitely look like, the sum polynomial  f l  and then it's

polynomial over with over  Ll−1 ,  that means it  can, it as this  xk+l−1 ,  and the variable. So

xk+l ,  and  it  will  be  also,  it's  polynomial  over  this  so  this  one  is  a  field  generated  by

x1 , ... , xk +l−1 , so that divided will be h common denominator will be x1, ... , xk . So this is our g

will  look like, where,  because this h is in the denominator, the polynomial  h(x1 ,... , xk) ,  this

polynomial cannot be in P, because you know everything is happening in l, l is the coefficient field of

A
p

,  where  P  is.  So  therefore  this  denominator  cannot  be  zero.  So  therefore  that  means  the

polynomial h will not be in ideal P. So therefore all these when you and the numerator f l , this is

actually polynomial in  K [X1 ,... , X k ] ,  this is l,...,  k + l  intersection P. This is what we have,

because when I put Xk +l  here it becomes 0. So therefore it is in p. everything is happening in the

coefficient field of 
A
p

, remember that, so, okay. Now if so what do you want to prove, here we

want to prove two things that are mainly, we want to prove that this f l  what we found here, along

with  f 1 , ... , f l−1  and  f l ,  the  generate  P  locally  at  P,  that  was  one.  And  second  was  the

derivative of, f i  by differentiation is 2 Xk+i , this cannot be P. This is also you have to prove.

Okay. All right. So now if you assume it is separable, if you assume separating transcendence base.
First I am proving derivative cannot be 0. But that was under the assumption that separable extension,
right? I want to first prove this the last part of the claim. So that we have a assumption it is separable

extension. So, because L over  L0  is separable then  Ll  over  Ll−1  this is also separable,

because this are in between fields. Okay. That means, that the errdisable polynomial of any element
here, over this the derivative of that will not be 0, the route will not be repeated. So that will mean that



if I take the differentiation of g, dg  with respect to this one, dxk+l , and he velvet at where it is

0, that is  xk+l , this is not 0, because the g is a errdisable polynomial of  xk+l , over this field

Ll−1 . But what does this mean? These mean that, so that these mean that if I differentiate, see

when you differentiate this and it is so this means that  
df l
dxk+l

,  this one is not in P. if suppose

somebody is in P that means you have to put all this small, small x size and it should become zero, but
it doesn't become zero that means it is not in P, see remember we are working in the field L, where L

is the portion full of 
A
p

. So if you want to test somebody in P are not you had to say it is 0 in l, but

it's not 0 in l, therefore it is, it is not in it. Okay. So that first of all shows that, first note that is f l  is

already belongs to kernel f l , this is clear because how do I test somebody is in the kernel f l , I

have to replace all the variable by small x size. But when I put only one variable here is this. When I

put this equal to xk+l , that is like putting g(xk+l)  is a route of g, therefore that is 0, therefore

this belong to this, it's clear, all right.
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So this shows first of all that if I take the ideal generated by f 1 , ... , f l  that is contained in that is, 

see I want to prove this is equal to kernel of f l  this is what we want to prove equality here. This is 

the first part of the claim, right? We want to choose polynomials f 1 , ... , f l , so that ideal generated 

by that is the kernel that was the claim, the first claim. Here this kernel of, f l  equal to this, with

f i  in this. So fis are already we have tested and we want to prove the equality here but equality 

also, we have already proved this inclusion by induction all these guys are in the early on, so later, so 
this is already clear only we have to prove the other way. So to prove the other way I will take f here 
and prove that f is a combination on this. All right. So f here means what? F here means, if I put 



variable to the small xk  it become zero. So that means we have only up to k+l , so I put the 

last earlier variable, small x k and the last one which is small x a plus l, that means this polynomial
x1 , ... , xk +l , this is 0 means, if I just look at this that means g will divide this polynomial. So that 

will mean that g divides f, first k+l−1  were able to do a small exercise and the last one capital. 

This divides where the division is in Ll−1 , Xk +l . So that means, so this divides this, so just 

write down what does it mean, so that means there exist polynomials are r is in K [X1 ,... , Xk +l ] , s

should come in the denominator. So it should be not in p so it is in K [X1 ,... , X k ]∖ p  such that if I

plug it in the first k+l−1  are do the small x, I will get equation like this,

f (x1 , ..., xk+l−1 , xk+s) . Times h(x1 ,... , xk) . Remember this h is coming from  that g when we 

wrote g as  a rational function so this divided by f (x1 , ..., xk+l−1 , Xk +l)  this is equal to

r (x1 ,... , xk+l−1 , X k+l)  divided by s (x1, ... , xk ) . This divide this, so write this f is the multiple 

of this g. And multiple means, so this g was written as s.  I will show it, g was written as this. So I just
cross multiplied it. So just cross multiplying it will get this. Now, this equality means, what? You 
cross multiply it so cross multiplying what do you get?  You will get like this. So now cross 
multiplying it this s times, f times, h so I will write h s f. This is s times this f, this h equal to r time 
this fl. So this is equal to r times f. And we are interested in the coefficient of as a polynomial in the 

variable xk+l . so first of all, these belongs to the Kernel of f l . So the kernel of l−q  

because think of this is a polynomials k+l  and compare the coefficients. The coefficients when 
you do this equality coefficients are equality, coefficients are equal so the other side is so that show 
that these polynomial  is actually in the kernel of l−1 . And kernel of a l−1  is generated by 

polynomial  f 1  to earlier polynomial, f 1 , ... , f l−1 . And now look at this h and s, they are not in 

p. So therefore, when I localize it, it will go down. There I can go down in the denominator, so 

therefore this f will belongs to the ideal generated by f 1 , ... , f l−1  and along with this f l  locally 

that is clear because h and s they are not in p. So that implies f belongs to ideal generated
f 1 , ... , f l−1 and this ideal is now not in the a but a localized p. In the ring a localized p. So that 

proves  that the, you wanted to prove the kernel, so the prove equality is here. You see, the proved 
equality here. Because we took arbitrary f here and we proved this f is in ideal generated by this 
locally. Okay, so that proves this claim. Now in the claim I'm going to use it for the last guy that is l 

equal to m. So that means, what we have proved is kernel of m is generated by f 1 , ... , f m  and this 

was in actually the field k [ x1, ... , xk ]  and then the polynomial  after that. This was it. But this is 

contained in a localized p. So therefore when I localize it you get so locally they are correct. So now 
what is the statement we want to prove? The next statement that the rank. The rank of the matrix is m.
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