
Lecture - 37

Connection between Regular local rings
and associated graded rings

Gyanam Paramam Dhyeyam: Knowledge is supreme.

Today, I will do what are called Regular local rings. Before I formally start it, I want to give couple of
motivations for studying this.  So for example, we have seen if K is a field and you have finite type
algebra or K. Then this corresponds to so called algebraic varieties in K power n, so we want to study this
and when talks about variety when it's equipped with the topology from the risk topology. So when want
to study points on this and especially the local behavior at the points. So this local behavior at the points,
if you, this V the variety and a is a point there, then there any corresponding and if you call this as a, this
a will corresponds to the maximal ideal m and, local behavior of V at a, that will be determined by this
localization. This local ring. This is called a local ring of V at a. So especially when would like to know
when is this point non-singular. Non-singular, actually this concept more coming from the analysis. For
example  if  you  remember  what  is  inverse  function  theorem  or  implicit  function  theorem.  So  they
corresponds to these points the differentials, the study of differential maps and the functional matrix or
Jacobian matrix and the rank of that matrix and also similar thing we want to do it for this. And as you
can see now this depends on the coordinates here. So one would like to have coordinate free approach. So
that is where I want to start more generally. So now, instead of varieties and finite type algebras and so
on. We start with a noetherian ring A. A is noetherian ring and then you have this Spec A and here is also
there is a rescue topology, now the points are not maximal ideals. The points are actually the prime ideals.
So and given p prime ideal, we have this concept a localize at p. This is a local ring. And again the idea is
by studying this local ring and its various properties, one would like to get information about this p in a
neighborhood. So that is what it is. And I want to prove at the end Jacobian criterion. So we will prove
Jacobian criterion for regularity. This, not today maybe next time. So this will decide this is the criterion
which will decide when this local ring at p is regular or not.
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So let us recall what we have proved so far. So if you have a local ring A. So I will assume now onwards
the ring is local. So this is local. So there's only one maximal ideal. And sometimes we will say with

residue field 
A
M

. So it can denoted by triplets. A, M and 
A
M

. So let's have local ring and when I

say local we will part, as a part we will assume that is it noetherian else. And even more, sometimes when
you want to assume more then we will assume that this is a local ring of a finite type algebra over a field.
Just to get the feeling from for the geometry feeling. Okay, so what we have proved is, this is dimension
of A, we have defined this dimension is a cool dimension and we have proved it is finite and the three
number namely the degree of Hilbert Samuel polynomial, it's a valid dimension and the Krull dimension
all this, even numbers are equal. We know it is finite. And not only that we have also proved on the way
that this dimension is bounded by the minimal number of generators for the maximal ideal. This is the
minimal number of generators for m. And this is well-defined that any two sets, any to minimal sets of
generators are m, they have the same cardinality. They are the same cardinality and the cardinality is

nothing but the vector speed dimension of  
m

m2
, as a vector space over  

A
M

. This is Nakayama's

lemma. So it can be strict in equality. But when it is equality, those rings are very important and they are
called regular local rings. So that is the definition of regular local rings. So A is called regular if Krull
dimension of A, equal to minimal number of generators for M, which is the vector space dimension of

m

m2
. Now, also you can define, if you have prime ideal in general, we call the ring is not local. In non-

local case, a ring is called regular if every localization. A localize at p, p is a regular. For every p in, the
Spectra. Now it's a big task how do we test some given local ring whether is it regular or not regular.



(Refer Slide Time: 08:55)

For example, if you want to test, if you take the circle coordinator become circle or real 
ℝ[X ,Y ]

X2
+Y 2

−1
.

Is it regular? Okay, such questions we will address after acquiring some kind of basic properties of this
rings. So getting back to the local situation, when we have a local ring Am . To study this, especially

the dimension, if you notice we have attached. This is associated graded ring,  grm(A) . This is the

direct sum, 
mn

mn+1
 n is 0,1,.... So we know, using this ring we have defined Hilbert function and degree

and so on. So this is called associated graded ring. Okay. Now, the first important observation is, let's us

write it as a theorem (A ,m)  local then A is regular. If only if the associated ring is a polynomial

algebra, plus d where K is a residue field. While strictly speaking I should say isomorphic. As K-algebras.
And where this d is obviously d has to be the dimension of the ring.
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Okay. So, proof. One thing I note here first. Note that from the dimension theory, we have proved one

easy consequence is dimension of the ring. Local case, this is the dimension of the grm(A) . This, I

don't remember whether we have, I have formally proved it. But in any case, I want to discuss more about
this in the tutorial sessions. So this. Okay, so once you note this, then this is easier because we know that
if  the  ring  is  regular,  if  A is  regular  then we know the dimension  of  A is  the  minimal  number  of

generators for m. That means as a this grm(A) , as a algebra over 
A
M

 generated by homogeneous

elements of degree 1 and precisely d in number. So this is, finite type, K algebra generated by d elements
of  degree  1.  Because  maximal  ideal  is  generated  by  d  elements.  So  that  means,  we  have  a  natural

surjective map from polynomial algebra in d variables to the associated graded ring. So this X i s' will

go to the generators of  mi s'.  Mod, of course,  they're mod  
m

m2
.  And this is  surjective is  clear

because this is generated by this elements. So this is surjective K algebra on morphism. Now I want to
claim it is isomorphism. If it is kernel adjective also. To see that if kernel is non-zero, then it will have at
least one on the relevant and this polynomials algebra over a field which is an integral domain. So if
kernel is non-zero and if I go mod that this will be isomorphic to the, let's call kernel to be A. So then we
will get this Isomorphism as a K-algebras, but then, the dimensional, this will be equal to dimension of
this. And the dimension of this would have dropped at least by one. Because A is non-zero ideal and we
have seen A, when an integral domain, when you go mod non-zero element dimension will drop at least
by 1, because the zero ideal at the end will disappear from the chain. That will be contradiction. So, this
will mean that dimension of d equal to which is dimension of graded ring which will be smaller, strictly
smaller than d which is absurd. This d is, well, this is d. Is d is the dimension of the polynomial ring, if
this a is a non-zero ideal and this dimension would have dropped at least by one. So this is another than



dimension d, therefore is not possible therefore kernel is zero, therefore it's an Automorphism, so that
proves the associated graded ring is a polynomial algebra.
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Now we have to see the converse, converse A. So conversely assume that, the A is graded, associated
graded ring is isomorphic to the polynomial ring. So we noted the number of variable should be equal to
the dimension d, if this, then this Isomorphism is graded Isomorphism. So this is a K-algebra graded
Isomorphism. Graded means homogeneous that means homogeneous elements of some degree will go to
precisely homogeneous elements of the same degree. So in particular, the homogeneous component of

degree 1 which is 
m

m2
, and here homogeneous degree component of the homogeneous component of

degree 1 which is precisely the vector space generated by capital  X1  to  Xd . This is isomorphic

two, this is the k-vector space, generated by these variables X1  to Xd . So basically these vectors

and dimension-d. So the dimension of these vector space, let's call it v, this dimension is d, therefore this

dimension is d, as a k is 
A
M

. But Nakayama's lemma, this is precisely m. And this d was a dimension.

So we prove d equal to  μ(m) ,  so therefore by definition A is regular.  Yes, because you see this

isomorphism is precisely x i  going to the, where this algebra, graded algebra as a algebra over zero

with component generated by degree 1 elements. And we're mapping the variables to those generators. 
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So it is and then extended. So it is homogeneous isomorphism. Okay. So, if you have a finite type K-

algebra, that is I will denote it by K, small x1  to small xn . So this is coefficient of the polynomial

algebra modulus of ideal. And now if you take prime ideal in this finite type K-algebra p, that prime ideal
first of all will corresponds to a unique prime ideal in the polynomial ring which contains this ideal a. So
therefore  I will write, instead of writing prime ideal in this that is a prime ideal in the polynomial algebra.

It's  in the Spec of  K [ x1 , ... , xn]  and which contain,  a is  containing p.  For such set  also there is

notation V (a) . V (a)  is a subset of all those prime ideals in the polynomial ring which contains

cf. So if you take any such p, so p here, then, and if, let's call this ring as a or let me call it R. Then r
localize at p, is our A. A is R localize at p. so in any case, in this case, the graded ring we have a the gram

will look like polynomial algebra K [ x1 , ... , xn]  modulus of ideal B. And this is a graded algebra. This

is K-graded algebra. So before I go on, I want to deduce. So we will come to this case soon. So I want to
write one or two corollaries. Corollary to above theorem that every regular local ring is integral domain.
That follows from the fact that because if A is regular local then we have seen this associated graded ring
in  the  polynomial  adjective.  So,  and,  associated  graded  ring  is  therefore  integral  domain.  And  if
associated graded ring is integral domain then the original ring is integral domain. That is easy to see. So I

will leave it for you to check this easy fact, grm(A)  is a domain then A is a domain. I will just say it

orally, what we need to check. So, if we have given this is an integral domain, this is a graded integral
domain. 
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So graded ring algebra  is  domain if  only if  there  is  no homogeneous zero divisors.  If  you use this
observation, then you can easily check A is a domain, because if A is a domain then A times B zero for
some A and B in the ring. And there in the maximal ideal, we go in local ring. So you choose power of
maximal ideal where A will belong, but not in the next power and similarly for B, then when you read the
images of A and B, associated graded ring, think of them as homogeneous elements of degree, whatever
the powers you've chosen, and it was if so and complete the proof by using that. Okay, the second. So this
is the part one of this corollary. Second part is regular local ring is normal. A is normal. So we've seen in
part one it is integral domain. So when you say ring is normal, so it's domain. So normal means, so recall
that normal means integrally close in its quotient field. Total quotient ring is precisely. This is who take
the minimal primes and take the union of that and then invert all of them. So it becomes the, or then we

had to look at this, take the non-zero divisors and invert all of them. So past from A to S−1 A , where S
is set of non-zero divisors in A. So this is  the,  this  map will  the injective and that is  the maximum
possibility. Because we cannot afford to invert anybody other than non-zero divisors, because if you do
then this will become zero. So, this is injective, therefore it makes M should talk integral closeness of A
in this way. And if that happen, then call the ring to be normal. But in this particular case, because it's a
domain this inverting all non-zero divisors mean, inverting all non-zero element that means this actually
is the quotient field in this case. So, normal means A is integrally close here, every element of this as
inverse A which is integral over A, it must be in A. Typical example of normal domain is integers. The
quotient field is ℚ  here, and ℤ  is integral close in q, that is a famous observation by Gauss. And
more generally don't need ℤ , but you have UFD, A is a UFD. The same proof we'll tell you UFDs are
normal in their quotient fields. So, K is quotient field of A, and this is normal, the same, same idea of this,
the idea of being used in the concept of GCD. How can set of GCD and then that was used in this proof
by Gauss. So UFDs are normal. Obviously A. So it's a big theorem that regular local ring is a UFD. And
that is what we've given to prove but these proofs involves homological algebra. And that is I will prepare
in the beginning and the theorem at the end will be regular local at UFD. Of course, but I'm not using this



corollary. This corollary is simpler than this. So how do you prove it? Again, the idea is the same, if you
remember the assignment when that integral extensions the supplements which I've written. There it was,
you will  see  that,  if  you want  to  prove A is  normal,  to  prove A normal,  enough to prove  that  the
associated graded ring is normal. But in, if A is regular local ring then the associated graded ring is
actually the polynomial algebra over a residue field. And again by theorem of Gauss that polynomial
algebra in seven new variables is a UFD. So therefore it is normal. And therefore by that observation, A is
normal.
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So one or two examples which you studied in earlier courses, let me mention few of them, so for example
if you would have studied let's say A equal to this number rings which arise from number theory. So,
ℤ  adjoin the route - 3 for example. This is of imaginary quadratic, a ring of quadratic integers. So this

is, in this case, the maximal ideal is, and I'm talking the maximal ideal. So first, this is not a local ring. So,

let's use take the ideal M which is generated by 2 and 1+√3 . 1±√3  this ideal. So, when I localize
now, A localize at M. This is not normal. Is it not integrally close. Because just look at, i will give an
element which is integral over these but it's not there. So, first of all, let us take ℤ  equal to one plus,

root minus three divided by two. This element will satisfy polynomial like this. Z2
−Z+1  is 0. That

you can check very easily because whenever square this, this is. So when you square this, this is 1 square

that is 1, -3 which is -2, and then, -2 + 2 √−3  and divided by this 4. This is  Z2
−Z , that is -1

±√−3  by 2. So these two gets cancelled, this is 2 here. And then + 1. So this is the + sign, this is the
- sign. This time we will get cancelled. And this is with minus, minus half. This is half year, this is half of
that so that we'll get zero. So therefore  ℤ  satisfy integral equation over this, but that is not there.



Because there two, so it's not normal. So therefore in particular this ring is not regular. In particular, Am
is not regular.
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One more observation that in case of dimension one, so remark in case of dimension of A is one. We have
to get back to the case very local now. A local and somehow dimension of A is one, then normality,
normal domain and regular, these are the same. 
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They are equivalent concepts.


